
Mobile-C
– A Multi-Agent Platform for Mobile C/C++ Agents

User’s Guide

Version 1.9

Harry H. Cheng

Mobile-C User’s Guide version 1.9 prepared by:

David Ko
Yu-Cheng Chou

September 20, 2007

Major Contributors (in alphabetical order)

Mobile-C is developed with idea, vision, and design by Professor Harry H. Cheng

People who helped to make Mobile-C the real thing (if you noticed that some
names are missing, please mail to mobilec@iel.ucdavis.edu)
--
Name Company (by the moment Remarks

of contribution)
--
Bertocco,Cristian Univ. of California, Davis Design and implementation
cbertocco@dei.unipd.it of encryption for security

in Mobile-C

Chen, Bo Univ. of California, Davis Design and implementation of
bochen@mtu.edu Mobile-C

Chou, Yucheng Univ. of California, Davis Design and implementation of
cycchou@ucdavis.edu Mobile-C library

Honda, Jason Sandia National Laboratories
jhonda@sandia.gov

Ko, David, Univ. of California, Davis Design and implementation of
dko@ucdavis.edu Mobile-C library

Linz, David Univ. of California, Davis Design and implementation of
ddlinz@gmail.com Mobile-C

Nestinger, Stephan, Univ. of California, Davis Webmaster of
thestinger@ucdavis.edu http://www.mobilec.org

2

Copyright

/*[

* Copyright (c) 2007 Integration Engineering Laboratory
University of California, Davis

*
* Permission to use, copy, and distribute this software and its

* documentation for any purpose with or without fee is hereby granted,

* provided that the above copyright notice appear in all copies and

* that both that copyright notice and this permission notice appear

* in supporting documentation.

*
* Permission to modify the software is granted, but not the right to

* distribute the complete modified source code. Modifications are to

* be distributed as patches to the released version. Permission to

* distribute binaries produced by compiling modified sources is granted,

* provided you

* 1. distribute the corresponding source modifications from the

* released version in the form of a patch file along with the binaries,

* 2. add special version identification to distinguish your version

* in addition to the base release version number,

* 3. provide your name and address as the primary contact for the

* support of your modified version, and

* 4. retain our contact information in regard to use of the base

* software.

* Permission to distribute the released version of the source code along

* with corresponding source modifications in the form of a patch file is

* granted with same provisions 2 through 4 for binary distributions.

*
* This software is provided "as is" without express or implied warranty

* to the extent permitted by applicable law.
]*/

Abstract

Mobile-C is an IEEE FIPA (Foundation for Intelligent Physical Agents) standard compliant multi-agent
platform for supporting C/C++ mobile agents in networked intelligent mechatronic and embedded systems.
Although it is a general-purpose multi-agent platform, Mobile-C is specifically designed for real-time and
resource constrained applications with interface to hardware. Mobile agents are software components that
are able to move between different execution environments. Mobile agents in a multi-agent system com-
municate and work collaboratively with other agents to achieve a global goal. It allows a mechatronic or
embedded system to adapt to a dynamically changing environment.

Contents

1 Introduction 1

2 Mobile-C Library Installation 3
2.1 Requirements . 3
2.2 Installation on Unix . 3

2.2.1 Install the Mobile-C library . 3
2.3 Installation on Windows . 4

2.3.1 Building the Mobile-C Library . 4
2.4 Installing the Mobile-C Security Module . 4

3 Getting Started 5
3.1 Compilation on Unix . 5
3.2 Compilation on Windows . 5
3.3 Overview of Sample Application Programs . 5
3.4 Execution of Sample Applications . 7
3.5 Architecture of the Mobile-C Library . 9

3.5.1 Architecture of the Mobile-C Library . 9
3.5.2 Implementation of the Mobile-C Library . 10

4 Mobile-C Agent Migration Message Format 11
4.1 General Message Format . 11
4.2 Multiple Tasks with a Single Code Block . 11
4.3 Multiple Tasks with Multiple Code Blocks . 12

5 Interface between Binary and Mobile Agent Space 17
5.1 Invoke a Mobile Agent Space Function from Binary Space 17

6 Extend Mobile-C Functionality to Mobile Agent Space 21
6.1 Terminate Mobile Agent Execution from Mobile Agent Space 21
6.2 Invoke a Registered Service from Mobile Agent Space . 22

7 Synchronization Support in the Mobile-C library 29
7.1 Synchronization in Mobile Agent Space . 29
7.2 Synchronization Between Binary and Agent Spaces . 31
7.3 Mobile-C Execution with Multiple Agencies . 33

i

8 Mobile-C Security Module 40
8.1 Security Module Architecture and Overview . 40
8.2 Enabling the Security Module . 40

8.2.1 Enabling the Security Module in Unix . 40
8.2.2 Enabling the Security Module in Windows . 40
8.2.3 Further Instructions . 41

A Mobile-C API in the C/C++ Binary Space 43
MC AddAgent() . 46
MC CallAgentFunc() . 48
MC ChInitializeOptions() . 50
MC CondReset() . 51
MC CondSignal() . 52
MC CondWait() . 53
MC CopyAgent() . 54
MC End() . 56
MC FindAgentByID() . 57
MC FindAgentByName() . 58
MC GetAgentExecEngine() . 60
MC GetAgentNumTasks() . 62
MC GetAgentReturnData() . 63
MC GetAgentStatus() . 65
MC GetAgentType() . 67
MC GetAgentXMLString() . 68
MC Initialize() . 70
MC MutexLock() . 72
MC MutexUnlock() . 73
MC PrintAgentCode() . 74
MC ResetSignal() . 75
MC RetrieveAgent() . 77
MC RetrieveAgentCode() . 78
MC SemaphorePost() . 80
MC SemaphoreWait() . 81
MC SendAgentMigrationMessage() . 82
MC SendAgentMigrationMessageFile() . 83
MC SetAgentStatus() . 84
MC SetDefaultAgentStatus() . 86
MC SetThreadOff() . 87
MC SetThreadOn() . 88
MC Steer() . 89
MC SteerControl() . 91
MC SyncDelete() . 93
MC SyncInit() . 94
MC TerminateAgent() . 95
MC Wait() . 96
MC WaitAgent() . 97
MC WaitRetrieveAgent() . 98
MC WaitSignal() . 100

ii

B Mobile-C API in the C/C++ Script Space 102
mc AddAgent() . 105
mc CallAgentFunc() . 106
mc CondReset() . 109
mc CondSignal() . 110
mc CondWait() . 111
mc FindAgentByID() . 112
mc FindAgentByName() . 114
mc GetAgentStatus() . 116
mc GetAgentXMLString() . 117
mc MutexLock() . 118
mc MutexUnlock() . 119
mc PrintAgentCode() . 120
mc RetrieveAgent() . 121
mc RetrieveAgentCode() . 122
mc SemaphorePost() . 123
mc SemaphoreWait() . 124
mc SendAgentMigrationMessage() . 125
mc SendAgentMigrationMessageFile() . 126
mc SendSteerCommand() . 127
mc SetAgentStatus() . 128
mc SetDefaultAgentStatus() . 129
mc SyncDelete() . 130
mc SyncInit() . 131
mc TerminateAgent() . 133

Index 135

iii

Chapter 1

Introduction

Parallel and distributed computing [1] [2] are widely used in scientific and engineering fields, especially
for time-critical or time-consuming tasks. Parallel computing is typically carried out in dedicated multipro-
cessors with a central clock and shared memory. On the other hand, distributed computing is decentralized
parallel computing, using two or more computers communicating over a network to accomplish a common
objective or task. It is similar to computer clustering with the main difference being a wide geographic dis-
persion of the resources. In addition to the main difference, the types of hardware, programming languages,
operating systems and other resources may vary drastically as well in distributed computing.

Although the processing speed of networked computers is typically not as fast as that of a dedicated
parallel computer, networked computers are less expensive and more broadly available. Due to the rapid
improvement in network hardware and software that makes distributed computing faster, more broadly
available, and easier-to-implement than before, there are more and more research investigations nowadays
targeting or exploiting this low-end, decentralized parallel computing. Meanwhile, as the scale of distributed
applications rapidly expands, there is an increasing demand for the code mobility.

Agent technology can significantly enhance the design and analysis of problem domains under the fol-
lowing three conditions [3]: (1) the problem domain is geographically distributed; (2) the subsystems exist
in a dynamic environment; (3) the subsystems need to interact with each other more flexibly. Mobile agents
are software components that can travel between different execution environments [4]. Mobile agents can
be created dynamically during runtime and dispatched to source systems to perform tasks with the most
updated code. Therefore, the mobility of mobile agents provides distributed applications with significant
flexibility and adaptability which are both essential to satisfy the dynamically changing requirements and
conditions in a distributed environment.

Most of the mobile agent systems were developed to support only Java mobile agents. Furthermore,
many of them are standalone platforms. In other words, they were not designed to be embedded in a user
application to support code mobility. Mobile-C [5] [6] [7] [8] was originally developed as a standalone,
IEEE Foundation for Intelligent Physical Agents (FIPA) compliant mobile agent platform with a primary
intention to fit applications where low-level hardware gets involved, such as networked mechatronic and
embedded systems. Since most of these systems are written in C/C++, Mobile-C uses C/C++ as the mobile
agent language for easy interfacing with control programs and underlying hardware. In addition, Mobile-C
uses an embeddable C/C++ interpreter – Ch, originally developed by Cheng [9] [10] [11], to support the
execution of C/C++ mobile agent code.

In order to provide distributed applications with code mobility, this user’s guide presents a mobile agent
library, the Mobile-C library. The Mobile-C library is supported in various operating systems including
Windows, Unix, and real-time OS. It has a small footprint to satisfy the small memory requirement for a
variety of mechatronic and embedded systems. This mobile agent library allows Mobile-C to be embedded

1

in a program to support C/C++ mobile agents. The API functions in this library facilitate the development
of a multi-agent system that can easily interface with a variety of hardware devices.

2

Chapter 2

Mobile-C Library Installation

This chapter describes the prerequisites to install the Mobile-C library and the installation steps for both
Unix and Windows operating systems.

2.1 Requirements

This user’s guide assumes all necessary software packages are installed correctly and function. The software
packages required to successfully install the Mobile-C library include:
(1) Ch version 6.0.0 or greater: It can be obtained from http://www.softintegration.com
(2) Embedded Ch version 6.0.0 or greater: It can be obtained from http://www.softintegration.com

2.2 Installation on Unix

2.2.1 Install the Mobile-C library

The following commands will install the Mobile-C library in the system directory, which is usually ‘/usr/local/lib’
or ‘/usr/lib’ depending on your system. By default, the Mobile-C library created contains both shared
and static versions, which are ‘libmc.so.0.0.0’ and ‘libmc.a’, respectively. The header file, libmc.h, used
in the C/C++ binary space will be placed in the system directory, which is usually ‘usr/local/include’ or
‘/usr/include’ depending on your system.

cd <MCPACKAGE>/src
./configure
make
make install

Note that these commands will automatically build mxml-2.2.2 and xyssl-0.7, both of which are pack-
aged with Mobile-C, but will not install these libraries. The Mobile-C libraries only need these libraries to
compile, but does not need them installed in order to run.

Also note that the above commands will automatically compile all the included demos automatically
after compiling the Mobile-C library. The demos will run even if the ’make install’ step is omitted.

The ‘–prefix’ option can be used to specify the home directory to install the Mobile-C files, as shown in
the following commands.

cd <MCPACKAGE>/src
./configure --prefix=<MCHOME>

3

make
make install

<MCHOME> is the installation directory for the Mobile-C library and header file.
The library files ‘libmc.so.0.0.0’ and ‘libmc.a’ will be installed in <MCHOME>/lib, and the header file
‘libmc.h’ will be placed in <MCHOME>/include.

2.3 Installation on Windows

2.3.1 Building the Mobile-C Library

The following steps are suggested to build the MobileC library.

1. Open your development environment. Currently, only Visual Studio .NET 2003 and 2005 are tested
and/or supported.

2. Open the Mobile-C project solution. It is located in either the mobilec/src/win32/vcnet2003/ directory
or the mobilec/src/win32/vcnet2005/ directory and is named “mc lib win32.sln”.

3. Ensure that the ’Debug’ configuration is selected.

4. Click on “Build–Build Solution” from the menu. This should automatically build Mobile-C and all of
it’s modules in the correct order. The library produced is named libmc.lib located in the mobilec/src/
directory.

2.4 Installing the Mobile-C Security Module

For instructions on how to install the Mobile-C Security Module, please refer to Chapter 8 on page 40.

4

Chapter 3

Getting Started

3.1 Compilation on Unix

All the demo programs are compiled automatically in the Unix version.

3.2 Compilation on Windows

The following steps are suggested for building the MobileC demos.

1. Open your developement environment. Currently, only Visual .NET 2003 and 2005 are supported.

2. Open the Demo Project solution. It is named “mobilec demos.sln” and is located in either the mo-
bilec/demos/win32/vcnet2003 or the mobilec/demos/win32/vcnet2005 directory.

3. If you are using VC Net 2005, the ’Release’ configuration option may provide better results. The
issue with the ’Debug’ configuration is to be resolved.

4. To build all of the demos, click on “Build–Build Solution” from the menu.

3.3 Overview of Sample Application Programs

#include <stdio.h>
#include <libmc.h>

int main(int argc, char *argv[])
{
MCAgency_t agency;
int local_port = 5051;

agency = MC_Initialize(local_port, NULL);

printf("MobileC Started\n");
MC_Wait(agency);
return 0;

}

Program 1: A sample Mobile-C server. (demos/hello world/server.c)

5

Program 1 on the preceding page starts an agency that is capable of receiving mobile agents and execut-
ing mobile agent code.

#include <stdio.h>
#include <libmc.h>
int main(int argc, char *argv[])
{

The header file libmc.h is included at the beginning of the program. It defines all the data types, macros and
function prototypes for the Mobile-C library.

MCAgency_t agency;
int local_port = 5051;

The variable agency, of type MCAgency t, is a handle that contains information of an agency. The second
line initializes a local variable that will hold the port number we wish the agency to bind to.

agency = MC_Initialize(local_port, NULL);

MC Initialize() takes an integer and the address of an MCAgencyOptions t variable as its two parameters.
An MCAgencyOptions t variable is a structure that contains information about which threads to be acti-
vated and the default agent status specified by a user. Here, a NULL pointer is passed to MC Initialize() as
the second parameter instead of an MCAgencyOptions t variable to start an agency with default settings. A
local agency will be initialized to listen on port 5051 specified by the variable local port.

printf("MobileC Started\n");
MC_Wait(agency);
return 0;

}

The agency waits indefinitely for a mobile agent by the function MC Wait() .
Program 2 starts an agency that sends a mobile agent to a remote agency. Examining Programs 1 and 2,

we see that there are only two new API functions calls:

MC_SendAgentMigrationMessageFile(
agency,
"test1.xml",
"localhost",
5051);

and

MC_End(agency);

In Mobile-C, a mobile agent message is an Agent Communication Language (ACL) message in Exten-
sible Markup Language (XML) format. MC SendAgentMigrationMessageFile() takes an MCAgency t
variable, the path to a mobile agent message file, the name of the host on which a remote agency is running,
and the port number on which a remote agency is listening as its four parameters. Here,
MC SendAgentMigrationMessageFile() sends the mobile agent message saved as test1.xml in current
directory to the remote agency running on host localhost and listening on port 5051.

After the agent is sent, a call to function MC End() is made. This function tells all of the Mobile-C
internal modules to gracefully finish whatever they are doing and exit. This function call is important after
calling MC SendAgentMigrationMessageFile() to ensure that the agent is fully processed and sent before

6

terminating the agency. Failure to call MC End() here may result in the agent not being properly sent to the
receiving agency.

Also note that any valid hostname may be used in place of “localhost”. The communicating agencies
need not be on the same physical machine; in fact, in most cases they will be on seperate machines. Any
ipv4 string, i.e. “169.237.104.199”, or qualified hostname, i.e. “machine.ucdavis.edu”, may be used. For
instance, the code

MC_SendAgentMigrationMessageFile(
agency,
"test1.xml",
"169.237.104.199",
5055);

will send an agent to the server at address “192.168.0.5” listening on port 5055. Or,

MC_SendAgentMigrationMessageFile(
agency,
"test1.xml",
"machine.ucdavis.edu",
5031);

will send the agent to an agency at “machine.ucdavis.edu” listening on port 5031.

3.4 Execution of Sample Applications

In general, each of the demos is designed to have very similar execution procedures. For each demo, there
are one or more “servers”, which are simply vanilla Mobile-C agencies. To run the demo, start all of the
servers (there is only one server for most of the demos), and start the “client” program. Generally, the client
program also starts a Mobile-C agency, but it typically sends an agent to a destination as part of its startup
process as well.

For example, to run the Mobile-C “Hello World” example, run the following commands from a text
terminal on the server machine to start an agency listening on port 5051.

cd <MCPACKAGE>/demos/hello_world
./mc_server

Next, run the following commands from a text terminal on the client machine to start an agency listening
on port 5050 and send the mobile agent message test1.xml, shown as Program 3 on the next page, to the
remote agency listening on port 5051.

cd <MCPACKAGE>/demos/hello_world
./mc_client

After the mobile agent message is received and the mobile agent code is executed, the string Hello World!
should be printed to the text terminal on the server machine. Note that in this example, both the server and
client are running on the same machine, but this is not a requirement. The field “localhost” may be replaced
with any qualified domain name or IP address.

7

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>

int main(int argc, char *argv[])
{

MCAgency_t agency;
agency = MC_Initialize(5050, NULL);

printf("MobileC Started\n");
MC_SendAgentMigrationMessageFile(agency,

"test1.xml",
"localhost",
5051);

MC_End(agency);
exit(0);

}

Program 2: A sample Mobile-C client program. The sole purpose of this program is to send a Mobile-C
agent to another agency. (demos/hello world/client.c)

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
int main()
{

printf("\nHello World! This is mobagent1 from the port 5050.\n");
printf("I am performing the task on the agency at port 5051 now.\n");
return 0;

}
]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 3: A simple Mobile-C agent. (demos/hello world/test1.xml)

8

Figure 3.1: Architecture of the Mobile-C library.

Figure 3.2: Architecture of the Mobile-C library.

3.5 Architecture of the Mobile-C Library

The Mobile-C library allows a Mobile-C agency to be embedded in a program to support C/C++ mobile
agents. In addition, the Mobile-C API gives users a full control over a Mobile-C agency embedded in
a program. Therefore, the Mobile-C library not only provides a significant code mobility for distributed
applications, but also facilitates the development of a multi-agent system that can easily interface with
various hardware devices.

3.5.1 Architecture of the Mobile-C Library

Figure 3.2 illustrates the architecture of the Mobile-C library. The Mobile-C library allows a Mobile-C
agency to be embedded in a program to support C/C++ mobile agents. A Mobile-C agency refers to a
mobile agent platform within which mobile agents exist and operate. The Mobile-C API gives users a full
control over a Mobile-C agency and its different modules.

As a IEEE FIPA compliant mobile agent platform, a Mobile-C agency comprises three FIPA normative
modules, Agent Management System (AMS), Agent Communication Channel (ACC) and Directory Facili-
tator (DF). Two additional modules, Agent Execution Engine (AEE) and Agent Security Manager (ASM),
are included in a Mobile-C agency as well. These modules provide different functionalities summarized as
follows.

9

Agent Management System (AMS)
An AMS controls the creation, registration, execution, migration, persistence, and termination of a mobile
agent. It maintains a directory of Agent Identifiers (AIDs) for registered mobile agents. Each mobile agent
must register with an AMS in order to have a valid AID.

Agent Communication Channel (ACC)
An ACC routes messages between local and remote entities. It is responsible for the interactions between
distributed components, such as inter-agent communication and inter-platform agent transport. The interac-
tions can be performed through Agent Communication Language (ACL) message exchange.

Directory Facilitator (DF)
A DF serves yellow page services. Mobile agents wishing to advertise their services should register with a
DF. Visiting mobile agents can search a DF for mobile agents providing the services they desire.

Agent Execution Engine (AEE)
An AEE serves as the execution environment for mobile agent code. An AEE has to be platform independent
in order to support the execution of mobile agents in a heterogeneous environment.

Agent Security Manager (ASM)
An ASM is responsible for maintaining security policies for the host system. Some sample tasks of an
ASM include identifying users, protecting host resources, authenticating and authorizing mobile agents,
and ensuring the security and integrity of mobile agents.

3.5.2 Implementation of the Mobile-C Library

Figure 3.2 shows the implementation overview of the Mobile-C library. The functionalities of each module
of an agency are implemented as independent threads classified into five categories, that is, the AMS func-
tionality threads, the ACC functionality threads, the DF functionality threads, the ASM functionality threads
and the AEE threads. Each AEE thread is launched by one of the AMS functionality threads. The Mobile-C
library provides API functions to specify which thread needs to be active or inactive when an agency is
initialized. It also provides API functions to access the input and output data structures associated with the
functionality threads. A Mobile-C agency maintains a list of synchronization variables that can be used with
a group of Mobile-C functions to ensure synchronization among mobile agents and threads. The sizes of
the Mobile-C static and shared libraries for Linux are about 340 KB and 290 KB, respectively. The AMS
and ACC functionality threads are used as two examples in this section to demonstrate the implementation
of the Mobile-C library.

The header file libmc.h contains definitions of all the structures and functions of the Mobile-C library.
Table A.3 on page 45 lists the currently implemented functions for the binary space.

10

Chapter 4

Mobile-C Agent Migration Message Format

4.1 General Message Format

The message format for an agent migration message is designed such that multiple tasks and multiple code
blocks can be migrated from agency to agency. The message is an XML message with encapsulated C code.
An example of a rudimentary agent can be seen in Program 4 on page 12. Following is a brief description
of each XML tag.

• MESSAGE: This tag indicates to Mobile-C that the following data is a Mobile-C message. The
message type is included in the attribute “message”.

• MOBILE AGENT: This tag indicates that the contained data is a Mobile-C agent.

• AGENT DATA: This tag indicates that the contained data is data pertaining to this particular agent.

• NAME: The name of the agent.

• OWNER: The owner of the agent.

• HOME: The home of the agent. Any agent that has data to “return” will return it to this address by
default.

• TASK: This indicates that the following information pertains to the task or tasks the agent is intended
to perform.

• DATA: Each seperate DATA tag indicates a seperate task for the agent to perform. The tasks may be
seperate hosts and/or code blocks. In the rudimentary example, there is only one task.

• AGENT CODE: Each AGENT CODE block represents a block of code that the agent may execute.
Agents with multiple code blocks may decide at run-time which block to execute.

4.2 Multiple Tasks with a Single Code Block

An agent may have an indefinite number of tasks. The agent will perform the tasks in ther order that they are
stated in the XML file, completing each one before continuing to the next host. Following is an example of
an agent which has multiple tasks to perform, executing the same code block at each new host. See Program
5 on page 13 for an example.

11

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">

<MOBILE_AGENT>
<AGENT_DATA>

<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
int main()
{

printf("\nHello World! This is mobagent1 from the port 5050.\n");
printf("I am performing the task on the agency at port 5051 now.\n");
return 0;

}
]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 4: A rudimentary agent. (demos/hello world/test1.xml)

4.3 Multiple Tasks with Multiple Code Blocks

See Program 6 on page 15 for a more complicated example of agent code including multiple tasks and
multiple code blocks. Note that each code block has an associated id which are refered to in the respective
“DATA” tags. Also note that more than one “DATA” tag may refer to a code block. Thus, an agent may have
more “DATA” tags than code blocks.

12

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="2" num="0">

<DATA dim="0" name="results_iel2" complete="0" server="localhost:5051">
</DATA>
<DATA dim="0" name="results_ch" complete="0" server="localhost:5052">
</DATA>
<AGENT_CODE>
<![CDATA[

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

double results_iel2;
double results_ch;

int main()
{

FILE * fptr;
char line[1024];
double velocity, count = 0, sum = 0;

printf("\nThis is the mobile agent 3 from the bird1 machine.\n\n");
printf("My task on the %s is to find the average velocity of ", mc_host_name);
printf("vehicles passed under the %s detection station.\n\n", mc_host_name);
if (mc_task_progress == 0) {

if((fptr = fopen("ChDataFile_iel2", "r")) == NULL)
{

printf("Error: could not open file ’ChDataFile_iel2’.\n");
exit(EXIT_FAILURE);

}
} else {

if((fptr = fopen("ChDataFile_ch", "r")) == NULL)

Program 5: An example agent containing two tasks and a single code block. Note that the
variable “mc host name” is a special built-in variable described in Table B.3 on page 103. (de-
mos/multi task example/test single code block.xml)

13

{
printf("Error: could not open file ’ChDataFile_ch’.\n");
exit(EXIT_FAILURE);

}
}

fgets(line, sizeof(line), fptr);
while(!feof(fptr))
{

velocity = atof(strrchr(line, ’,’) + 1);
sum += velocity;
count++;
fgets(line, sizeof(line), fptr);

}
if(count != 0)
{

if (mc_task_progress == 0) {
results_iel2 = sum/count;

} else {
results_ch = sum/count;

}

printf("The average velocity under the detection station is %f.\n\n", sum/count);
}
else
{

results_iel2 = 0;
results_ch = 0;
printf("There is no vehicle passed under the detection station.\n\n");

}

fclose(fptr);
printf("I am leaving to go to the next host.\n");

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>
</MOBILE_AGENT>

</MESSAGE>
</GAF_MESSAGE>

Program 5: An example agent containing two tasks and a single code block. (Continued) Note that the
variable “mc host name” is a special built-in variable described in Table B.3 on page 103.

14

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="2" num="0">

<DATA dim="0" name="results_iel2" complete="0" server="localhost:5051" code_id="1" />
<DATA dim="0" name="results_ch" complete="0" server="localhost:5052" code_id="2" />
<AGENT_CODE id="1">
<![CDATA[

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

double results_iel2;
int main()
{

FILE * fptr;
char line[1024];
double velocity, count = 0, sum = 0;

printf("\nThis is the mobile agent 3 from the bird1 machine.\n\n");
printf("My task on the %s is to find the average velocity of ", mc_host_name);
printf("vehicles passed under the %s detection station.\n\n", mc_host_name);
if((fptr = fopen("ChDataFile_iel2", "r")) == NULL)
{
printf("Error: could not open file ’ChDataFile_iel2’.\n");
exit(EXIT_FAILURE);

}

fgets(line, sizeof(line), fptr);
while(!feof(fptr))
{
velocity = atof(strrchr(line, ’,’) + 1);
sum += velocity;
count++;
fgets(line, sizeof(line), fptr);

}
if(count != 0)
{
results_iel2 = sum/count;

printf("The average velocity under the detection station is %f.\n\n", sum/count);
}
else
{
results_iel2 = 0;
printf("There is no vehicle passed under the detection station.\n\n");

}
fclose(fptr);
printf("I am leaving to go to the next host.\n");

Program 6: An example agent containing two tasks and two code blocks. (de-
mos/multi task example/test multi code block.xml)

15

return 0;
}

]]>
</AGENT_CODE>
<AGENT_CODE id="2">
<![CDATA[

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

double results_ch;

int main()
{

FILE * fptr;
char line[1024];
double velocity, count = 0, sum = 0;

printf("\nThis is the mobile agent 3 from the bird1 machine.\n\n");
printf("My task on the %s is to find the average velocity of ", mc_host_name);
printf("vehicles passed under the %s detection station.\n\n", mc_host_name);
if((fptr = fopen("ChDataFile_ch", "r")) == NULL)
{
printf("Error: could not open file ’ChDataFile_ch’.\n");
exit(EXIT_FAILURE);

}

fgets(line, sizeof(line), fptr);
while(!feof(fptr))
{

velocity = atof(strrchr(line, ’,’) + 1);
sum += velocity;
count++;
fgets(line, sizeof(line), fptr);

}
if(count != 0)
{
results_ch = sum/count;
printf("The average velocity under the detection station is %f.\n\n", sum/count);

}
else
{
results_ch = 0;
printf("There is no vehicle passed under the detection station.\n\n");

}

fclose(fptr);
printf("I am leaving to go to the next host.\n");

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>
</MOBILE_AGENT>

</MESSAGE>
</GAF_MESSAGE>

Program 6: An example agent containing two tasks and two code blocks. (Continued)
16

Chapter 5

Interface between Binary and Mobile Agent
Space

An embeddable C/C++ interpreter Ch was chosen to be the AEE in the Mobile-C library to support C/C++
mobile agents. Therefore, in order to access the variables, functions, and data sets in the mobile agent space
from the binary space, Ch must be first embedded in the binary space. The function MC GetAgentExecEngine()
in Table A.3 returns the AEE associated with a mobile agent to the binary space. Using the AEE returned
by MC GetAgentExecEngine(), all of the Embedded Ch functions [12] can be called in a binary C/C++
program to access the variables, functions, and data sets defined in the mobile agent space. The Embedded
Ch toolkit also allows mobile agent code to invoke C/C++ functions defined in a binary C/C++ program.

The Embedded Ch toolkit reduces the complexity of heterogeneous development environment for both
embedded scripting and applications. With the consistent C/C++ code base, it can significantly reduce the
effort in the software development and maintenance. Moreover, with the Embedded Ch toolkit, C/C++
applications can be extended with all the features of Ch including built-in string type for scripting. The
Embedded Ch toolkit has a small footprint. The pointer and time deterministic nature of the C language
provide a perfect interface with hardware in real-time systems.

5.1 Invoke a Mobile Agent Space Function from Binary Space

This example illustrates how to call a function defined in mobile agent code by using the Mobile-C library
and Embedded Ch toolkit. The mobile agent in this example is a persistent agent, which is not removed
upon termination of its execution.

The client program shown in Program 7 on the next page starts a Mobile-C agency listening on port 5051
by the function MC Initialize(), and sends a mobile agent to the remote agency running on host localhost
at port 5050 through the function MC SendAgentMigrationMessageFile(). The filename including the full
path of the mobile agent is specified from the standard input.

The mobile agent sent to the remote agency is shown in Program 8 on page 19. The name, owner, source
machine of the mobile agent are mobileagent1, IEL, and localhost:5051, respectively. The mobile agent is
persistent since the flag persistent is set to 1 in Program 8. This flag can be set to 0 or removed by a user for
a non-persistent mobile agent. The embedded mobile agent code is a simple but complete C program which
defines the function hello() to be called in the server program.

As shown in Program 9 on page 20, the server program starts a Mobile-C agency listening on port 5050
by the function MC Initialize(), and waits for a mobile agent. The mobile agent named mobileagentl is found
by the function MC FindAgentByName() , and the AEE associated with the mobile agent is obtained by the
function MC AgentExecEngine() . The variable returned by MC AgentExecEngine() is a Ch interpreter of

17

#include <libmc.h>

#include <stdio.h>
#ifndef _WIN32
#include <unistd.h>
#else
#include <windows.h>
#endif

int main(int argc, char *argv[])
{

/* Init the agency */
MCAgency_t agency;
agency = MC_Initialize(

5051,
NULL);

MC_SendAgentMigrationMessageFile(
agency,
"test1.xml",
"localhost",
5050);

MC_End(agency);

return 0;
}

Program 7: A program which sends a persistent mobile agent. (demos/persistent example/client.c)

data type ChInterp t. This variable is the first parameter for all of the Embedded Ch functions. The function
hello() defined in the mobile agent code is invoked by the Embedded Ch function Ch CallFuncByName().

There are several different methods to call functions in mobile agent space from the binary space using
the Embedded Ch API. Here we describe the function Ch CallFuncByName() used in Program 9. With
Ch CallFuncByName(), a function defined in the mobile agent space can be called by its name. The proto-
type of Ch CallFuncByName() is shown as follows.

int Ch CallFuncByName(ChInterp t interp, char *name, void *retval, ...);
The first argument is an instance of the Ch interpreter. The second argument is a string containing the

name of the function to be called. The function name is associated with a function defined in mobile agent
code. The third argument is a pointer containing the address of the return value of the called function. If
the called function takes any arguments, the arguments should be listed after the third argument, retval.
Ch CallFuncByName() returns zero on successful execution or non-zero on failure.

The other method of executing the function is through the Mobile-C api function MC CallAgentFunc()
. This method is seen in the example program, Program 9

Figure 5.1 on page 20 shows the output when the binary file server compiled from Program 9 was
executed. The string Hello World! generated from the function hello() was printed to the screen when the
Enter key was pressed after the mobile agent had arrived.

18

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA

persistent="1"
number_of_elements="0"
name="no-return"
complete="0"
server="localhost:5050"
>

</DATA>
<AGENT_CODE>

<![CDATA[
#include <stdio.h>
struct arg_struct{

int a;
int b;

};
int main()
{

printf("The sample persistent agent has now arrived.\n");
return 0;

}

int hello(struct arg_struct* arg)
{

printf("Hello!!!\n");
printf("This text is being generated from within the ’hello()’ function!\n");
printf("I received arguments of value %d %d.\n", arg->a, arg->b);
return 4;

}
]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 8: A persistent mobile agent. Agent’s marked “persistent” are not flushed from the agency after
they terminate. (demos/persistent example/test1.xml)

19

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

MCAgent_t agent;
ChInterp_t interp;
int retval;
int arg[2];
/* Init the agency */
MCAgency_t agency;
agency = MC_Initialize(

5050,
NULL);

printf("Please press ’enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName(agency, "mobagent1");
if (agent == NULL) {

printf("Could not find agent!\n");
exit(0);

}
/* The following executution of code may be performed two different

ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with
MC_GetAgentExecEngine() and using the Embedded Ch api to call
the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. */

arg[0] = 50;
arg[1] = 51;
/*interp = MC_GetAgentExecEngine(agent);
Ch_CallFuncByName(interp, "hello", &retval, arg); */
MC_CallAgentFunc(

agent,
"hello",
&retval,
arg);

printf("Value of %d was returned.\n", retval);
return 0;

}

Program 9: A Mobile-C agency. (demos/persistent example/host.c)

$./host
Please press ’enter’ once the sample agent has arrived.

MobileC > The sample persistent agent has now arrived.

Hello!!!
This text is being generated from within the ’hello()’ function!
I received arguments of value 50 51.
Value of 4 was returned.
$

Figure 5.1: Output from the binary server program.

20

Chapter 6

Extend Mobile-C Functionality to Mobile
Agent Space

In order to allow mobile agent code to call user defined routines and access data sets defined in the binary
space, as well as control other mobile agents defined in the mobile agent space through the Mobile-C API
functions, the Mobile-C functionality has to be extended into the mobile agent space. We integrated Ch with
the Mobile-C library to provide access to some Mobile-C functionalities.

Figure 6.1 on page 23 shows how mobile agent code interfaces with the Mobile-C library. When the
function mc function() is called in mobile agent code, Ch searches the corresponding interface function
MC function chdl() in the Mobile-C library, and passes arguments to it by calling the function. Subse-
quently, the interface function MC function chdl() invokes the target function MC function(), and passes the
return value back to the mobile agent space [12].

The prototypes of Mobile-C functions used in the mobile agent space are declared in mob agent.c
through an Embedded Ch function, Ch DeclareFunc(). The data type, MCAgent t, used as a parameter
or return value by certain Mobile-C functions for the mobile agent space is also defined in mob agent.c by
two Embedded Ch functions, Ch DeclareVar() and Ch DeclareTypedef() [12]. Table B.5 on page 104 lists
the currently implemented functions for the mobile agent space. Two examples are used to demonstrate the
applications and features of the Mobile-C functionality in the mobile agent space.

6.1 Terminate Mobile Agent Execution from Mobile Agent Space

This example demonstrates how to send a mobile agent to terminate the execution of another currently
running mobile agent. These two mobile agents belong to independent mobile agent spaces.

The server and client programs used in this example are the same as Program 1 on page 5 and Program 7
on page 18, respectively. The first mobile agent sent to the remote agency is mobileagent1 ex3.xml shown in
Program 10 on page 24. The execution of the mobile agent code will repeatedly print a string Hello World! to
the screen every second. The second mobile agent sent to the remote agency is mobileagent2 ex3.xml shown
in Program 11 on page 25. The function mc FindAgentByName() returns a variable of type MCAgent t as a
handle to a mobile agent. The mobile agent code embedded in mobileagent2 ex3.xml finds a mobile agent
named mobileagent1 by the function mc FindAgentByName() and terminates the execution of mobileagent1
by the function mc TerminateAgent() .

21

6.2 Invoke a Registered Service from Mobile Agent Space

This example demonstrates how to send a mobile agent to invoke a service provided by persistent mobile
agents registered with the DF.

The server and client programs used in this example are the same as Programs 1 and 7, respectively. The
first mobile agent sent to the remote agency is shown in Program 12 on page 26. The execution of the mo-
bile agent code will register two services with the remote DF through the function mc RegisterService().
The two services are addition and subtraction which provide addition and subtraction of two integers,
respectively. These services also refer to the functions defined in the mobile agent code. The function
mc RegisterService() takes three parameters. An MCAgent t type variable is the first parameter. A system
variable of type MCAgent t, mc current agent, is used as the first parameter when services for the current
mobile agent are registered, as illustrated in Program 12 on page 26. The system variable mc current agent
is declared in mob agent.c of the Mobile-C source code using the function Ch DeclareVar() to hold the
current mobile agent. An array of pointer to character and an integer are the second and third parameters,
respectively. The array holds the name of the services whereas the integer denotes the number of the services
to be registered.

The second mobile agent is similar to the first and also registers two services: multiplication and division.
This mobile agent can be seen in 13 on page 27.

The third mobile agent sent to the remote agency is shown in Program 14 on page 28. The function
mc SearchForService() takes five parameters. The first parameter is the name of the service to be found.
The second parameter is the address of an array of ponter to character that holds the names of all the mobile
agents with the desired service. Likewise, the third parameter is the address of an array of pointer to charater
that holds the desired service name associated with all the found mobile agents. The fourth parameter is the
address of a one-dimensional integer array that holds the IDs of all the mobile agents with the desired
service. The last parameter is the address of an integer denoting the number of mobile agents that have been
found. In this example, once the search for addition service is done, the first mobile agent with this service
will be returned by the function mc FindAgentByID() with a parameter as the first element of array agentIDs.
In this example, the first found mobile agent is mobileagent1 ex4.xml. The function addition() defined in
mobileagent1 ex4.xml will be called through the function mc CallAgentFunc() to perform addition of two
integers. Since mc CallAgentFunc() can only pass one argument to the invoked function, the address of
a data structure with two integer members is passed to addition() in this example. The return value of
addition() is assigned to the variable retval. The string Result of 49 + 51 is 100. will be printed to the screen
at the end.

22

Figure 6.1: Interface of mobile agent code with the Mobile-C library.

23

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5050">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
#include <unistd.h>
int main()
{

printf("The sample persistent agent has now arrived.\n");
while(1) {

printf("Hello.\n");
/* Sleep for 1 second */
usleep(1000000);

}
return 0;

}
]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 10: A mobile agent which enters an infinite loop and does not terminate. (de-
mos/persistent example/test2.xml)

24

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5050">
</DATA>

<AGENT_CODE>
<![CDATA[

#pragma package <chmobilec>
printf("At the very beginning of code.");
#include <stdio.h>
int main()
{

MCAgent_t tmp;
printf("The sample persistent agent has now arrived.\n");
tmp = mc_FindAgentByName("mobagent1");
printf("Agent mobagent1 is at address %x\n", tmp);
if (tmp == NULL) {

printf("Agent not found. Terminating...\n");
return 0;

}
mc_TerminateAgent(tmp);
return 0;

}
]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 11: This agent terminates the execution of the agent in Program 10. (de-
mos/persistent example/test3.xml)

25

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>service1</NAME> <OWNER>IEL</OWNER> <HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA persistent="1" number_of_elements="0"

name="no-return" complete="0" server="localhost:5050">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
struct arg_struct{

int a;
int b;

};

int main()
{

char **services;
int i;
services = malloc(sizeof(char*)*2);
for(i = 0; i < 2; i++) {

services[i] = malloc(40);
}
strcpy(services[0], "addition");
strcpy(services[1], "subtraction");
printf("Service provider 1 has arrived.\n");
printf("I provide addition and subtraction service.\n");
mc_RegisterService(mc_current_agent, services, 2);
return 0;

}

int addition(struct arg_struct* arg)
{

printf("Adding %d and %d...\n", arg->a, arg->b);
return arg->a + arg->b;

}

int subtraction(struct arg_struct* arg)
{

printf("Subtracting %d - %d...\n", arg->a, arg->b);
return arg->a - arg->b;

}
]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 12: Sample agent containing ’addition’ and ’subtraction’ services. Note that the vari-
able “mc current agent” is a special built-in variable described in Table B.3 on page 103. (de-
mos/mc df service test/service provider 1.xml)

26

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">
<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>service2</NAME> <OWNER>IEL</OWNER> <HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA persistent="1" number_of_elements="0"

name="no-return" complete="0" server="localhost:5050">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
struct arg_struct{

int a;
int b;

};

int main()
{

char **services;
int i;
services = malloc(sizeof(char*)*2);
for(i = 0; i < 2; i++) {

services[i] = malloc(40);
}
strcpy(services[0], "multiplication");
strcpy(services[1], "modulus");

printf("Service provider 2 has arrived.\n");
printf("I provide multiplication and modulus service.\n");
mc_RegisterService(mc_current_agent, services, 2);
return 0;

}

int multiplication(struct arg_struct* arg)
{

printf("Multiplying %d and %d...\n", arg->a, arg->b);
return arg->a * arg->b;

}

int modulus(struct arg_struct* arg)
{

printf("Modulo %d % %d...\n", arg->a, arg->b);
return arg->a % arg->b;

}
]]>

</AGENT_CODE>
</TASK>

</AGENT_DATA>
</MOBILE_AGENT>

</MESSAGE>
</GAF_MESSAGE>

Program 13: Sample agent containing ’multiplication’ and ’division’ services. Note that the vari-
able “mc current agent” is a special built-in variable described in Table B.3 on page 103. (de-
mos/mc df service test/service provider 2.xml)

27

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">

<MOBILE_AGENT>
<AGENT_DATA>

<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA number_of_elements="0" name="no-return" complete="0" server="localhost:5050">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
struct arg_struct {

int a;
int b;

};
int main()
{

MCAgent_t agent;
int retval;
/* Search Return Variables */
char** agentNames;
char** serviceNames;
int *agentIDs;
int numResults;

/* Argument Struct */
struct arg_struct arg;

/* Search for addition service */
printf("\n\n\nSearching for addition service.\n");
mc_SearchForService(

"addition",
&agentNames,
&serviceNames,
&agentIDs,
&numResults);

printf("Done searching.\n");
if (numResults < 1) {

printf("No agents with service ’addition’ found.\n");
exit(0);

}

/* Just get the first hit */
printf("Using agent %s for addition.\n", agentNames[0]);
agent = mc_FindAgentByID(agentIDs[0]);

arg.a = 44;
arg.b = 45;
mc_CallAgentFunc(agent, "addition", &retval, &arg);
printf("Result of addition %d + %d is %d.\n", arg.a, arg.b, retval);

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 14: Sample agent that searches for and invokes agent services. (de-
mos/mc df service test/test2.xml)

28

Chapter 7

Synchronization Support in the Mobile-C
library

In a Mobile-C agency, mobile agents are executed by independent AEEs. A user might also need to design
a multi-threaded application where a Mobile-C agency itself is one of the many threads that handle differ-
ent tasks. The Mobile-C library provides support for synchronization among mobile agents and threads.
The synchronization API functions are used to protect shared resources as well as provide a method of
deterministically timing the execution of mobile agents and threads.

The internal implementation consists of a linked list of Portable Operating System Interface for UNIX
(POSIX) compliant synchronization variables, namely, mutexes, condition variables, and semaphores. Each
node in the linked list is a synchronization variable which is assigned or given a unique identification number.
The API functions can be called from the binary or mobile agent space to initialize the synchronization
variables and access them by their unique identification numbers in the linked list.

Mobile-C synchronization variables are an abstract variable, initialized by the function MC SyncInit()
. Once initialized, they may be used as a mutex, condition variable, or semaphore. No further function
calls are necessary to change a generic synchronization variable to one of the types. However, once a
synchronization variable is used as a mutex, condition variable, or semaphore, it should not be used again
as a different type. For instance, if a call to

MC_SyncInit(500);
MC_MutexLock(500);

is made, initializing a synchronization variable with id “500”, and locking it as a mutex, it should not be
then used with any of the condition variable or semaphore functions.

The application of the Mobile-C synchronization mechanism is illustrated by the example below.

7.1 Synchronization in Mobile Agent Space

The Mobile-C library allows synrchonization among agents via mutexes, condition variables, and semaphores.
Each type of synchronization variable is used for different features. Perhaps the most common and basic of
these variables is the mutex.

The client program shown in Program 15 on the next page starts a Mobile-C agency listening on port
5050 and subsequently sends two mobile agents to the remote agency running on host localhost at port 5051.
The mobile agents are shown in Program 16 on page 31 and Program 17 on page 32. These mobile agents
will use a mutex to guard an operation that may not be performed by two agents simultaneously.

29

#include <stdio.h>
#include <libmc.h>
#ifdef _WIN32
#include <windows.h>
#endif
#define WAIT_TIME 2
int main(int argc, char *argv[])
{

MCAgency_t agency;
agency = MC_Initialize(5050, NULL);

printf("MobileC Started\n");
printf("Sending sleep agent...\n");
MC_SendAgentMigrationMessageFile(agency,

"sleep.xml",
"localhost",
5051);

printf("Sleeping for %d seconds.\n", WAIT_TIME);
#ifndef _WIN32

sleep(WAIT_TIME);
#else
Sleep(WAIT_TIME * 1000);
#endif

printf("Sending wake-up agent...\n");
MC_SendAgentMigrationMessageFile(agency,

"wake.xml",
"localhost",
5051);

MC_End(agency);
return 0;

}

Program 15: A program used to send a mobile agent. (demos/agent mutex example/mc client.c)

This example demonstrates the ability of a Mobile-C mutex to protect a resource that may be shared
between two agents. Any real or imaginary resource that should not be accessed simultaneously by more
than one entity at a time should be guarded by a mutex. The resource may be a shared variable, or something
more abstract such as control of a robot arm. If there is only one robot arm, then only one entity, agents in
this case, should be able to control it at a time.

In our particular example, the tasks our agents are going to perform are imaginary. Each task is rep-
resented instead by the “sleep()” function and the printing of a message, which causes execution of that
particular agent to pause for a time, as if it were performing a task. For our example, we will intentionally
cause our agents to collide execution times to demonstrate that our mutex works. Examining our client
program, Program 15, we see that we set a two second interval between sending the agents. However, the
task that each agent tries to perform will be five seconds long. This means that the second agent will arrive
while the first agent is in the middle of performing its simulated task. The execution output will demonstrate
that the second agent will not begin its task until the first agent is finished.

Semaphores are also used to guard resources in which a limited number of entities may access at a time.
Since the behaviour and usage of semaphores are similar to that of a mutex, an example is not provided here.
Please see the demo in directory demos/agent semaphore example/ for an example.

Condition variables are also useful in multi-threaded applications in order for threads to sleep and wait
for a signal. Program 18 on page 33 illustrates an agent that will sleep on a condition variable immediately
after arriving at an agency. Program 19 on page 34 shows an agent that will send a signal to the condition

30

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">

<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
int main()
{

int mutex_id;
printf("Sleep agent has arrived.\n");
mutex_id = mc_SyncInit(55);
if (mutex_id != 55) {

printf("Possible error. Aborting...\n");
exit(1);

}
printf("This is agent 1.\n");
printf("Agent 1: I am locking the mutex now.\n");
mc_MutexLock(mutex_id);
printf("Agent 1: Mutex locked. Perform protected operations here\n");
printf("Agent 1: Waiting for 5 seconds...\n");
sleep(5);
printf("Agent 1: Unlocking mutex now...\n");
mc_MutexUnlock(mutex_id);

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 16: An agent which uses a mutex while accessing a shared resource. (de-
mos/agent mutex example/sleep.xml)

variable the first agent in Program 18 is waiting on, thereby causing the first agent to wake up and continue
execution.

7.2 Synchronization Between Binary and Agent Spaces

The synchronization variables initialized using MC SyncInit() are accessible in both agent space and bi-
nary space, enabling agents to synchronize with binary threads. Again, all three Mobile-C synchronization

31

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>wake_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">

<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
int main()
{

int mutex_id;
mutex_id = 55;
printf("Agent 2: Has arrived");
printf("Agent 2: Attempting to lock the mutex...\n");
mc_MutexLock(mutex_id);
printf("Agent 2: Mutex locked.\n");
printf("Agent 2: Perform protected operations here.\n");
sleep(5);
mc_MutexUnlock(mutex_id);
printf("Agent 2: Mutex Unlocked\n");
mc_SyncDelete(mutex_id);

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 17: An agent which uses a mutex while accessing a shared resource. (de-
mos/agent mutex example/wake.xml)

variable types: mutexes, condition variables, and semaphores, may be used in both binary and agent space.
Referring the example server code in Program 20 on page 35, we show a piece of code where a binary

program containing a Mobile-C agency must perform a subroutine involving a shared resource, protecting it
with a mutex. The shared resource will be accessible from both the main() binary thread as well as any agents
which are residing in the agency. As such, the server code initializes and uses a mutex to protect the shared
resource. In our example agent shown in Program 21 on page 36, we see that this agent needs to access the
same shared resource, and so it must first lock the mutex before doing so. This example demonstrates that
the mutex will prevent both the agent and binary thread from accessing the resource simultaneously

Referring now to Program 22 on page 37 and Program 23 on page 38, we demonstrate the use of Mobile-
C condition variables to synchronize an agent with a binary thread. The binary space thread program shown

32

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">

<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>

#define SYNC_ID 55
int main()
{

int cond_id;
printf("Sleep agent has arrived.\n");
cond_id = mc_SyncInit(SYNC_ID);
if (cond_id != SYNC_ID) {

printf("Possible error. Aborting...\n");
exit(1);

}
printf("This is the sleep agent.\n");
printf("I am going to sleep now...\n");
mc_CondWait(cond_id);
printf("This is the sleep agent: I am awake now. Continuing...\n");
mc_SyncDelete(cond_id);

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 18: A sample agent which will immediately sleep on a condition variable after arriving at an
agency. (demos/agent cond example/sleep.xml)

in Program 22 simply waits on a condition variable. The agent shown in Program 23 signals the binary
space thread with a call to mc CondSignal(), causing the binary space thread to run once.

7.3 Mobile-C Execution with Multiple Agencies

Using the Mobile-C library, multiple agencies may be initialized within the same program. This is useful in
cases where the agencies may have different Ch configuration properties, privileges, etc. Functions such as

33

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>wake_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">

<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>

#define SYNC_ID 55
int main()
{

int cond_id;
cond_id = SYNC_ID;
printf("This is the wake agent.\n");
mc_CondSignal(cond_id);

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 19: A sample agent which will signal a condition variable after arriving at an agency. (de-
mos/agent cond example/wake.xml)

MC CopyAgent() and MC AddAgent() become useful in such cases.
In the example shown in Program 24 on page 39, we demonstrate a program with two agencies, listening

on ports 5051 and 5052, respectively. In our simple example, the server simple duplicates every agent
arriving to the agency on port 5051 and adds a copy to the agency on port 5052.

Note that the MC CopyAgent() function in necessary here because the Mobile-C functions which re-
trieve agents from agencies retrieve references to the agents; not copies. the MC CopyAgent() function
performs a deep copy on the agent structure so that it may be used in another agency. Also note that setting
the copied agent’s status to “MC WAIT CH” ensures that it will execute again upon entering the second
agency.

34

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
#define MUTEX_ID 55
int main(int argc, char *argv[])
{

MCAgency_t agency;
MCAgencyOptions_t options;
int i;
MC_InitializeAgencyOptions(&options);
/* We want _all_ the threads on: EXCEPT, the command prompt thread */
for (i = 0; i < MC_THREAD_ALL; i++) {

MC_SetThreadOn(&options, i);
}
MC_SetThreadOff(&options, MC_THREAD_CP);

agency = MC_Initialize(
5051,
&options);

MC_SyncInit(agency, MUTEX_ID);
/* Now, lets perform a simulated task which accesses a shared resource

* 20 times. */
for(i = 0; i < 20; i++) {
printf("C Space: Attempting to lock mutex...\n");
MC_MutexLock(agency, MUTEX_ID);
printf("C Space: Mutex Locked. Performing task.\n");

#ifndef _WIN32
sleep(1);

#else
Sleep(1000);

#endif
printf("C Space: Unlocking Mutex...\n");
MC_MutexUnlock(agency, MUTEX_ID);
printf("C Space: Mutex Unlocked.\n");

}

MC_SyncDelete(agency, MUTEX_ID);
MC_End(agency);
return 0;

}

Program 20: A sample program with an embedded Mobile-C agency demonstrating the use of a Mobile-C
mutex to protect a shared resource. (demos/cspace mutex example/mc server.c)

35

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">

<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
int main()
{

int mutex_id;
int i;
printf("This is agent 1.\n");
for(i = 0; i < 10; i++) {
printf("Agent: Attempting to lock mutex...\n");
mc_MutexLock(55);
printf("Agent: Mutex Locked. Performing protected operations...\n");
sleep(1);
printf("Agent: Attempting to unlock mutex...\n");
mc_MutexUnlock(55);
printf("Agent: Mutex Unlocked.\n");

}

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 21: A sample Mobile-C agent which must perform an action on a shared resource guarded by a
Mobile-C mutex. (demos/cspace mutex example/agent.xml)

36

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
#define COND_ID 55

int main(int argc, char *argv[])
{

MCAgency_t agency;
MCAgencyOptions_t options;
int i;
MC_InitializeAgencyOptions(&options);
/* We want _all_ the threads on: EXCEPT, the command prompt thread */
for (i = 0; i < MC_THREAD_ALL; i++) {

MC_SetThreadOn(&options, i);
}
MC_SetThreadOff(&options, MC_THREAD_CP);

agency = MC_Initialize(
5051,
&options);

MC_SyncInit(agency, COND_ID);
/* Let us wait on a condition variable. Every time an agent signals that

* variable, we will perform some task. */
while(1) {
MC_CondWait(agency, COND_ID);
printf("C space: I am awake! Performing some task.\n");
MC_CondReset(agency, COND_ID);

}

MC_Wait(agency);
return 0;

}

Program 22: An example server containing a thread which will run once each time it is signalled by another
thread or by an agent. (demos/cspace cond example/mc server.c)

37

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">

<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
#define COND_ID 55
int main()
{

int i;
printf("This is agent 1.\n");
for(i = 0; i < 5; i++) {
printf("Agent: Perform some task here.\n");
sleep(2);
printf("Agent: signal C space for followup action.\n");
mc_CondSignal(COND_ID);
sleep(1);

}

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

Program 23: A sample agent which signals a condition variable. (demos/cspace cond example/agent.xml)

38

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main(int argc, char *argv[])
{

MCAgency_t agency1;
MCAgency_t agency2;
MCAgencyOptions_t options;
int i;

MCAgent_t agent;
MCAgent_t agent_copy;

MC_InitializeAgencyOptions(&options);
/* We want _all_ the threads on: EXCEPT, the command prompt thread */
for (i = 0; i < MC_THREAD_ALL; i++) {

MC_SetThreadOn(&options, i);
}
MC_SetThreadOff(&options, MC_THREAD_CP);

agency1 = MC_Initialize(
5051,
&options);

agency2 = MC_Initialize(
5052,
&options);

while(1) {
agent = MC_WaitRetrieveAgent(agency1);
MC_CopyAgent(&agent_copy, agent);
MC_SetAgentStatus(agent_copy, MC_WAIT_CH);
MC_AddAgent(agency2, agent_copy);
MC_ResetSignal(agency1);

}

return 0;
}

Program 24: An example program containing two Mobile-C agencies. The program com-
municates agents arriving at the agency on port 5051 to the agency at port 5052.(de-
mos/multiple agency example/mc server.c)

39

Chapter 8

Mobile-C Security Module

The latest Mobile-C package includes an experimental security module. The security module is intended to
provide a method of sending encrypted agents to agencies. The encryption helps guard against man-in-the-
middle attacks and provides a small measure of agent authentication as well.

8.1 Security Module Architecture and Overview

The Mobile-C security module uses the Diffie-Hellman key exchange cryptographic protocol to encrypt
agents. When a security-enabled agency attempts to contact another agency for the first time, the agencies
trade public keys. Every other communication between the agencies will be encrypted using the public keys,
and thus may only be decrypted by the target agency’s private key. Since the private and public keys may be
randomly generated, this makes it difficult/impossible for a third party to decrypt an intercepted encrypted
agent, since they do not own the private keys.

8.2 Enabling the Security Module

Since the module is still in the experimental stage, it is disabled by default. Several configuration options
need to be changed in order for the module to be built and used.

8.2.1 Enabling the Security Module in Unix

In a unix environment, a configuration option needs to be stated during the configuration process. The new
configuration step will be the command

./configure --enable-security

instead of the old

./configure

8.2.2 Enabling the Security Module in Windows

In windows, a line needs to be added to the file “src/winconfig.h”. The line to be added is

#define MC_SECURITY 1

40

8.2.3 Further Instructions

Furthermore, the option needs to be turned on in the options parameter which is passed into MC Initialize().
The following C code snippet will start a security-enabled agency listening on port 5050.

MCAgency_t agency;
MC_AgencyOptions_t options;
MC_InitializeAgencyOptions(&options);
options.enable_security = 1;
agency = MC_Initialize(5050, &options);

See more about the MC AgencyOptions t type at the description of the MC Initialize() function in Appendix
A on page 70.

41

Bibliography

[1] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and
Analysis of Algorithms. Reading, MA: Addison-Wesley, 1994.

[2] U. Manber, Introduction to Algorithms - A Creative Approach. Reading, MA: Addison-Wesley, 1989.

[3] J. L. Adler and V. J. Blue, “A Cooperative Multi-Agent Transportation Management and Route Guid-
ance System,” Research Part C - Emerging Technologies, Vol. 10, No. 5-6, pp. 433–454, 2002.

[4] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobility,” IEEE Transactions on Soft-
ware Engineering, Vol. 24, No. 5, pp. 342–361, 1998.

[5] B. Chen, “Runtime Support for Code Mobility in Distributed Systems.” Department of Mechanical
and Aeronautical Engineering, University of California, Davis, Ph.D. dissertation, 2005.

[6] B. Chen and H. H. Cheng, “A Run-Time Support Environment for Mobile Agents,” in Proc. of
ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, No.
DETC2005-85389, Long Beach, California, 2005.

[7] B. Chen, H. H. Cheng, and J. Palen, “Mobile-C: a Mobile Agent Platform for Mobile C/C++ Agents,”
Software-Practice & Experience, Vol. 36, No. 15, pp. 1711–1733, December 2006.

[8] Mobile-C: A Multi-Agent Platform for Mobile C/C++ Code, http://www.mobilec.org.

[9] H. H. Cheng, “Scientific Computing in the Ch Programming Language,” Scientific Programming,
Vol. 2, No. 3, pp. 49–75, Fall 1993.

[10] ——, “Ch: A C/C++ Interpreter for Script Computing,” C/C++ User’s Journal, Vol. 24, No. 1, pp.
6–12, Jan. 2006.

[11] Ch — an Embeddable C/C++ Interpreter, http://www.softintegration.com.

[12] Embedded Ch, SoftIntegration, Inc., http://www.softintegration.com/products/sdk/embedded ch/.

42

Appendix A

Mobile-C API in the C/C++ Binary Space

The header file libmc.h defines all the data types, macros and function prototypes for the Mobile-C library.
The header file is used in the C/C++ binary space.

Table A.1: Data types defined in libmc.h.

Data Type Description
MCAgency t A handle containing information of an agency.
MCAgent t A handle containing information of a mobile agent.
MCAgencyOptions t A structure containing information about which thread(s) to be activated

and the default agent status specified by a user.

43

Table A.2: Macros defined in libmc.h.

Macro Description
enum MC ThreadIndex e
MC THREAD AI Identifier for agent initalizing thread.
MC THREAD AM Identifier for agent managing thread.
MC THREAD CL Identifier for connection listening thread.
MC THREAD MR Identifier for message receiving thread.
MC THREAD MS Identifier for message sending thread.
MC THREAD CP Identifier for command prompt thread.
MC THREAD ALL Identifier for all threads.
enum MC Signal e
MC RECV CONNECTION Signal activated after an agency accepts a connection.
MC RECV MESSAGE Signal activated after an agency receives an ACL message.
MC RECV AGENT Signal activated after an agency receives a mobile agent.
MC EXEC AGENT Signal activated after a mobile agent is executed.
MC ALL SIGNALS Signal activated after any of the above four events occurs.
enum MC AgentType e
MC REMOTE AGENT Identifier for a remote mobile agent.
MC LOCAL AGENT Identifier for a local mobile agent.
MC RETURN AGENT Identifier for a return mobile agent.
enum MC AgentStatus e
MC WAIT CH Value indicating a mobile agent is waiting to be executed.
MC WAIT MESSGSEND Value indicating a mobile agent is waiting to be exported to another

agency.
MC AGENT ACTIVE Value indicating a mobile agent is being executed.
MC AGENT NEUTRAL Value indicating a mobile agent is waiting for an unspecified reason.
MC AGENT SUSPENDED Value indicating a mobile agent is being suspended.
MC WAIT FINISHED Value indicating a mobile agent has been executed and is waiting to be

removed.

44

Table A.3: Functions in the C/C++ binary space.

Function Description
MC AddAgent() Add a mobile agent into an agency.
MC ChInitializeOptions() Set the initialization options for a Ch to be used as one AEE in an

agency.
MC CondReset() Reset a Mobile-C condition variable.
MC CondSignal() Signal another agent that is waiting on a condition variable.
MC CondWait() Cause the calling agent or thread to wait on a Mobile-C condition

variable with the ID specified by the argument.
MC CopyAgent() Perform a deep copy to copy an agent.
MC End() Terminate a Mobile-C agency.
MC FindAgentByID() Find a mobile agent by its ID number in an agency.
MC FindAgentByName() Find a mobile agent by its name in an agency.
MC GetAgentExecEngine() Get the AEE associated with a mobile agent in an agency.
MC GetAgentNumTasks() Get the number of tasks a mobile agent has.
MC GetAgentReturnData() Get the return data of a mobile agent.
MC GetAgentStatus() Get the status of a mobile agent in an agency.
MC GetAgentType() Get the type of a mobile agent.
MC GetAgentXMLString() Retrieve a mobile agent message in XML format as a character string.
MC Initialize() Start a Mobile-C agency and return a handle of the launched agency.
MC MutexLock() Lock a previously initialized Mobile-C synchronization variable as a

mutex.
MC MutexUnlock() Unlock a locked Mobile-C synchronization variable.
MC PrintAgentCode() Print a mobile agent code for inspection.
MC ResetSignal() Reset the Mobile-C signalling system.
MC RetrieveAgent() Retrieve the first neutral mobile agent from a mobile agent list.
MC RetrieveAgentCode() Retrieve a mobile agent code in the form of a character string.
MC SemaphorePost() Unlock one resource from a Mobile-C semaphore.
MC SemaphoreWait() Allocate one resource from a Mobile-C synchronization semaphore

variable.
MC SendAgentMigrationMessage() Send an ACL mobile agent message to a remote agency.
MC SendAgentMigrationMessageFile() Send an ACL mobile agent message saved as a file to a remote agency.
MC SetAgentStatus() Set the status of a mobile agent in an agency.
MC SetDefaultAgentStatus() Assign a user defined default status to all incoming mobile agents.
MC SetThreadOff() Deactivate a thread in an agency.
MC SetThreadOn() Activate a thread in an agency.
MC SyncDelete() Delete a previously initialized synchronization variable.
MC SyncInit() Initialize a new synchronization variable.
MC TerminateAgent() Terminate the execution of a mobile agent in an agency.
MC Wait() Cause the calling thread to wait indefinitely on an agency.
MC WaitAgent() Cause the calling thread to wait until a mobile agent is received.
MC WaitRetrieveAgent() Block the calling thread until a mobile agent arrives, and return the

mobile agent instead of executing it.

45

MC AddAgent()
Synopsis
#include <libmc.h>
int MC AddAgent(MCAgency t agency, MCAgent t agent);

Purpose
Add a mobile agent into an agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency An initialized agency handle to add an agent to.
agent An initialized mobile agent.

Description
This function adds a mobile agent to an already running agency.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main(int argc, char *argv[])
{

MCAgency_t agency1;
MCAgency_t agency2;
MCAgencyOptions_t options;
int i;

MCAgent_t agent;
MCAgent_t agent_copy;

MC_InitializeAgencyOptions(&options);
/* We want _all_ the threads on: EXCEPT, the command prompt thread */
for (i = 0; i < MC_THREAD_ALL; i++) {

MC_SetThreadOn(&options, i);
}
MC_SetThreadOff(&options, MC_THREAD_CP);

agency1 = MC_Initialize(
5051,
&options);

agency2 = MC_Initialize(
5052,
&options);

while(1) {

46

agent = MC_WaitRetrieveAgent(agency1);
MC_CopyAgent(&agent_copy, agent);
MC_SetAgentStatus(agent_copy, MC_WAIT_CH);
MC_AddAgent(agency2, agent_copy);
MC_ResetSignal(agency1);

}

return 0;
}

See Also

47

MC CallAgentFunc()
Synopsis
#include <libmc.h>
int MC CallAgentFunc(MCAgent t agent, const char* funcName, void* returnV al, void* varg);

Purpose
This function is used to call a function that is defined in an agent.

Return Value
This function returns 0 on success, or a non-zero error code on failure.

Parameters
agent The agent in which to call a function.
funcName The function to call.
returnV al (Output) The return value of the agent function.
varg An argument to pass to the function.

Description
This function enables a program to treat agents as libraries of functions. Thus, an agent may provide a
library of functions that may be called from binary space with this function, or from another agent by the
agent-space version of this function.

Example

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

MCAgent_t agent;
ChInterp_t interp;
int retval;
int arg[2];
/* Init the agency */
MCAgency_t agency;
agency = MC_Initialize(

5050,
NULL);

printf("Please press ’enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName(agency, "mobagent1");
if (agent == NULL) {

printf("Could not find agent!\n");
exit(0);

}
/* The following executution of code may be performed two different

ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with
MC_GetAgentExecEngine() and using the Embedded Ch api to call

48

the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. */

arg[0] = 50;
arg[1] = 51;
/*interp = MC_GetAgentExecEngine(agent);
Ch_CallFuncByName(interp, "hello", &retval, arg); */
MC_CallAgentFunc(

agent,
"hello",
&retval,
arg);

printf("Value of %d was returned.\n", retval);
return 0;

}

See Also
mc CallAgentFunc()

49

MC ChInitializeOptions()
Synopsis
#include <libmc.h>
int MC ChInitializeOptions(MCAgency t agency, ChOptions t options);

Purpose
Set the initialization options for a Ch to be used as one AEE in an agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A Mobile-C Agency.
options Options for setting a Ch to be used as one AEE in an agency. ChOptions t is defined as a

structure as the following:

typedef struct ChOptions{
int shelltype; // shell type
char *chhome; // Embedded Ch home directory

} ChOptions_t;

Description
This function sets up a Ch for executing the mobile agent code. The Ch shell type and the startup file to be
used are indicated in the argument options. If this function is not called, the default value for ChOptions
will be used to start up a Ch for running the mobile agent code.

Example

MCAgency_t agency;
ChOptions_t ch_options;
ch_options.chhome = malloc(50);
strcpy(ch_options.chhome, "/home/user/");
agency = MC_Initialize(5050, NULL);
MC_ChInitializeOptions(agency, ch_options);

/* Etc... */

See Also

50

MC CondReset()
Synopsis
#include <libmc.h>
int MC CondReset(MCAgency t agency, int id);

Purpose
Reset’s a Mobile-C condition variable so that it may be used with MC CondWait() again.

Return Value
This function returns 0 upon success or non-zero if the condition variable was not found.

Parameters

agency A Mobile-C agency.
id The id of the condition variable to signal.

Description
This function reset’s a Mobile-C condition variable, setting it back to unsignalled status.
Example
Please see Program 22 on page 37 in Chapter 7.

See Also
MC CondDelete(), MC CondInit(), MC CondSignal(), MC CondReset().

51

MC CondSignal()
Synopsis
#include <libmc.h>
int MC CondSignal(int id);

Purpose
Signal another mobile agent which is waiting on a condition variable.

Return Value
This function returns 0 if the condition variable is successfully found and signalled. It returns non-zero if
the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description
This function is used to signal another mobile agent or thread that is waiting on a Mobile-C condition vari-
able. The function that calls MC CondSignal must know beforehand the id of the condition variable which
a mobile agent might be waiting on.

Example
Please see Program 17 on page 32 and Program 21 on page 36 in Chapter 7.
See Also
MC CondDelete(), MC CondInit(), MC CondSignal().

52

MC CondWait()
Synopsis
#include <libmc.h>
int MC CondWait(MCAgency t agency, int id);

Purpose
Cause the calling mobile agent or thread to wait on a Mobile-C condition variable with the id specified by
the argument.

Return Value
This function returns 0 upon successful wakeup or non-zero if the condition variable was not found.

Parameters

agency A Mobile-C agency.
id The id of the condition variable to signal.

Description
This function blocks until the condition variable on which it is waiting is signalled. If an invalid id is
specified, the function returns 1 and does not block. The function is designed to enable synchronization
possibilities between threads and mobile agents without using poll-waiting loops.

Note that if the same condition variable is to be used more than once, the function MC CondReset()
must be called on the condition variable.

Example
Please see Program 22 on page 37 in Chapter 7.

See Also
MC CondDelete(), MC CondInit(), MC CondSignal(), MC CondWait().

53

MC CopyAgent()
Synopsis
#include <libmc.h>
int MC CopyAgent(MCAgent t agent out, MCAgent t* agent in);

Purpose
Copies an agent.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent outA copied agent.
agent inThe agent to copy.

Description
This function is used to perform a deep copy on an Mobile-C agent. It is useful in conjunction with functions
that retrieve agents from agencies, since those functions only retrieve a reference to the agent: Not a full
copy.
Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main(int argc, char *argv[])
{

MCAgency_t agency1;
MCAgency_t agency2;
MCAgencyOptions_t options;
int i;

MCAgent_t agent;
MCAgent_t agent_copy;

MC_InitializeAgencyOptions(&options);
/* We want _all_ the threads on: EXCEPT, the command prompt thread */
for (i = 0; i < MC_THREAD_ALL; i++) {

MC_SetThreadOn(&options, i);
}
MC_SetThreadOff(&options, MC_THREAD_CP);

agency1 = MC_Initialize(
5051,
&options);

agency2 = MC_Initialize(
5052,
&options);

54

while(1) {
agent = MC_WaitRetrieveAgent(agency1);
MC_CopyAgent(&agent_copy, agent);
MC_SetAgentStatus(agent_copy, MC_WAIT_CH);
MC_AddAgent(agency2, agent_copy);
MC_ResetSignal(agency1);

}

return 0;
}

See Also

55

MC End()
Synopsis
#include <libmc.h>
int MC End(MCAgency t agency);

Purpose
Terminate a Mobile-C agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle to a running agency.

Description
This function stops all the running threads in an agency and deallocates all the memories regarding an
agency.

Example

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>

int main(int argc, char *argv[])
{

MCAgency_t agency;
agency = MC_Initialize(5050, NULL);

printf("MobileC Started\n");
MC_SendAgentMigrationMessageFile(agency,

"test1.xml",
"localhost",
5051);

MC_End(agency);
exit(0);

}

See Also

56

MC FindAgentByID()
Synopsis
#include <libmc.h>
MCAgent t MC FindAgentByID(MCAgency t agency, int id);

Purpose
Find a mobile agent by its ID number in a given agency.

Return Value
The function returns an MCAgent t object on success or NULL on failure.

Parameters
agency An agency handle.
id An integer representing a mobile agent’s ID number.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s ID number.

Example
This function is equivalent to the agent-space version. Please see the example for mc FindAgentByID()
listed on page B on page 112.
See Also
MC FindAgentByName()

57

MC FindAgentByName()
Synopsis
#include <libmc.h>
MCAgent t MC FindAgentByName(MCAgency t agency, const char *name);

Purpose
Find a mobile agent by its name in an agency.

Return Value
The function returns an MCAgent t object on success or NULL on failure.

Parameters
agency An agency handle.
name A character string containing the mobile agent’s name.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s given name.

Example

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

MCAgent_t agent;
ChInterp_t interp;
int retval;
int arg[2];
/* Init the agency */
MCAgency_t agency;
agency = MC_Initialize(

5050,
NULL);

printf("Please press ’enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName(agency, "mobagent1");
if (agent == NULL) {

printf("Could not find agent!\n");
exit(0);

}
/* The following executution of code may be performed two different

ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with
MC_GetAgentExecEngine() and using the Embedded Ch api to call
the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. */

arg[0] = 50;

58

arg[1] = 51;
/*interp = MC_GetAgentExecEngine(agent);
Ch_CallFuncByName(interp, "hello", &retval, arg); */
MC_CallAgentFunc(

agent,
"hello",
&retval,
arg);

printf("Value of %d was returned.\n", retval);
return 0;

}

See Also
MC FindAgentByID()

59

MC GetAgentExecEngine()
Synopsis
#include <libmc.h>
ChInterp t MC GetAgentExecEngine(MCAgent t agent);

Purpose
Get the AEE associated with a mobile agent in an agency.

Return Value
The functions returns a Ch interpreter on success and NULL on failure.

Parameters
agent A valid mobile agent.

Description
This function is used to retrieve a Ch interpreter from a mobile agent. The mobile agent must be a valid
mobile agent that has not been terminated at the time of this function call. The Ch interpreter may be used
by the Embedded Ch API to execute functions, retrieve data, and other various tasks.

Example

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

MCAgent_t agent;
ChInterp_t interp;
int retval;
int arg[2];
/* Init the agency */
MCAgency_t agency;
agency = MC_Initialize(

5050,
NULL);

printf("Please press ’enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName(agency, "mobagent1");
if (agent == NULL) {

printf("Could not find agent!\n");
exit(0);

}
/* The following executution of code may be performed two different

ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with
MC_GetAgentExecEngine() and using the Embedded Ch api to call
the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. */

60

arg[0] = 50;
arg[1] = 51;
/*interp = MC_GetAgentExecEngine(agent);
Ch_CallFuncByName(interp, "hello", &retval, arg); */
MC_CallAgentFunc(

agent,
"hello",
&retval,
arg);

printf("Value of %d was returned.\n", retval);
return 0;

}

See Also
MC CallAgentFunc()

61

MC GetAgentNumTasks()
Synopsis
#include <libmc.h>
int MC GetAgentNumTasks(MCAgent t agent);

Purpose
Return the total number of tasks a mobile agent has.

Return Value
This function returns a non negative integer on success and a negative integer on failure.

Parameters
agent A MobileC agent.

Description
This function returns the total number of tasks that an agent has. It counts all tasks: those that have been
completed, those that are in progress, and those that have not yet started.

Example

int i;
MCAgent_t agent;

/* More code here */

i = MC_GetAgentNumTasks(agent);
printf("The agent has %d tasks.\n", i);

The previous piece of code retrieves the nuber of tasks that an agent has and prints it to standard output.

See Also

62

MC GetAgentReturnData()
Synopsis
#include <libmc.h>
int MC GetAgentReturnData(MCAgent t agent, int task num, void** data, int* dim, int** extent);

Purpose
Retrieve the data from a return mobile agent.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent A returning agent.
task num The task for which the return data is to be retrieved.
data A pointer to hold an array of data.
dim An integer to hold the dimension of the array.
extent A pointer to hold an array of extents for each dimension of the data array.

Description
This function is used to retrieve the return data of a mobile agent. Mobile agents may return single data
values as well as multidimensional arrays of int, float, or double type. The first two arguments, agent and
task num, are input arguments which specify which mobile agent and task for which to retrieve data. The
next three arguments are unallocated pointers which are modified by the function. The mobile agent’s return
data are stored as a single list of values in data. The dimension of the array is stored into dim, and the size
of each dimension is stored into extent.

Example

MCAgent_t agent;
MCAgency_t agency;
double *data;
int dim;
int *extent;
int i;
int elem;

/* Agency initialization code here */

agent = MC_FindAgentByName(agency, "ReturnAgent");
MC_GetAgentReturnData(agent, 0, &data, &dim, &extent);
elem = 1;
for(i=0; i<dim; i++) {

printf("dim %d has %d size.\n", i, extent[i]);
elem *= extent[i];

}
printf("There are %d total elements in the multidimensional array.\n", elem);

63

The above code prints the dimension and extent of each dimension of the return data held by the agent. It
only prints the data of the first task, as indicated by the second argument of function MC GetAgentReturnData(),
which is 0 in this example.

See Also

64

MC GetAgentStatus()
Synopsis
#include <libmc.h>
int MC GetAgentStatus(MCAgent t agent);

Purpose
Get the status of a mobile agent in an agency.

Return Value
The return value is of an enumerated type, “enum MC AgentStatus e”. The enum may be seen in Table A.2
on page 44. The values are

0 , MC WAIT CH : Mobile agent is currently waiting to be executed.
1 , MC WAIT MESSGSEND : Mobile agent is currently waiting to be exported to another agency.
2 , MC AGENT ACTIVE : Mobile agent is currently being executed.
3 , MC AGENT NEUTRAL : Mobile agent is waiting for an unspecified reason.
4 , MC AGENT SUSPENDED : Mobile agent is currently being suspended.
5 , MC WAIT FINISHED : Mobile agent has finished execution and is waiting for removal.

Parameters
agent The mobile agent from which to retrieve status information.

Description
This function gets a mobile agent’s status. The status is used to determine the mobile agent’s current state
of execution.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main(int argc, char *argv[])
{

MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
char *str;
int i;
MC_InitializeAgencyOptions(&options);

for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn(&options, i);

}
MC_SetThreadOff(&options, MC_THREAD_CP); /* Turn off the command prompt */

agency = MC_Initialize(
5051,

65

&options);

/* Retrieve the first arriving agent */
/* Note: MC_WaitRetrieveAgent() pauses the agency: We’ll need to unpause

* it later with MC_SignalReset() */
agent = MC_WaitRetrieveAgent(agency);
printf("The agent status is: %d\n", MC_GetAgentStatus(agent));
printf("This agent has %d task(s).\n", MC_GetAgentNumTasks(agent));
str = MC_GetAgentXMLString(agent);
printf("Agent XML String:\n%s\n", str);
free(str);
str = MC_RetrieveAgentCode(agent);
printf("Agent Code:\n%s\n", str);
free(str);
MC_ResetSignal(agency);
MC_Wait(agency);

return 0;
}

See Also

66

MC GetAgentType()
Synopsis
#include <libmc.h>
enum MC AgentType e MC GetAgentType(MCAgent t agent);

Purpose
This function blocks until one of a specified number of signals is signalled.

Return Value
This function returns an enumerated value of type MC AgentType e.

Parameters
agency A handle associated with a running agency.
signals A combination of signals specified by the enum MC Signal e.

Description
This function is used to determine the type of agent that input argument ’agent’ is. It is useful for use in
determining if the agent is an active agent of type ’MOBILE AGENT’, or a return agent containing return
data of type ’RETURN AGENT’.

Example

MCAgent_t agent;
enum MC_AgentType_e type;

/* Code here which assign an agent to variable ’agent’ */
type = MC_GetAgentType(agent);
switch(type) {

case MOBILE_AGENT:
printf("Received a mobile agent.\n");
break;

case RETURN_AGENT:
printf("Received a return agent.\n");
break;

default:
printf("Received an agent of other type.\n");
break;

}

The above code determines whether a mobile agent is a return agent or a normal agent to be executed, and
prints the result to the standard output.

See Also

67

MC GetAgentXMLString()
Synopsis
#include <libmc.h>
char *MC GetAgentXMLString(MCAgent t agent);

Purpose
Retrieve a mobile agent message in XML format as a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the XML formatted message.

Description
This function retrieves a mobile agent message in XML format as a character string. The return pointer is
allocated by ’malloc()’ and must be freed by the user.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main(int argc, char *argv[])
{

MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
char *str;
int i;
MC_InitializeAgencyOptions(&options);

for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn(&options, i);

}
MC_SetThreadOff(&options, MC_THREAD_CP); /* Turn off the command prompt */

agency = MC_Initialize(
5051,
&options);

/* Retrieve the first arriving agent */
/* Note: MC_WaitRetrieveAgent() pauses the agency: We’ll need to unpause

* it later with MC_SignalReset() */
agent = MC_WaitRetrieveAgent(agency);
printf("The agent status is: %d\n", MC_GetAgentStatus(agent));
printf("This agent has %d task(s).\n", MC_GetAgentNumTasks(agent));
str = MC_GetAgentXMLString(agent);

68

printf("Agent XML String:\n%s\n", str);
free(str);
str = MC_RetrieveAgentCode(agent);
printf("Agent Code:\n%s\n", str);
free(str);
MC_ResetSignal(agency);
MC_Wait(agency);

return 0;
}

See Also

69

MC Initialize()
Synopsis
#include <libmc.h>
MCAgency t MC Initialize(int port, MCAgencyOptions t ∗options);

Purpose
Start a Mobile-C agency and return a handle of the launched agency.

Return Value
The function returns an MCAgency t on success and NULL on failure.

Parameters
port The port number to listen on for incoming mobile agents.
options The address of a structure of type MCAgencyOptions t for specifying which thread(s) to

be activated in an agency and setting the default agent status for incoming mobile agents.
MCAgencyOptions t is defined as a structure as the following:

typedef struct MCAgencyOptions_s{
int threads; /*!< Threads to start */
int default_agent_status; /*!< Default agent status */
int modified; /*!< unused */
int enable_security; /*!< security enable flag */

/* Following are some thread stack size options:

* unix/pthreads only! */
int stack_size[MC_THREAD_ALL];

} MCAgencyOptions_t;

Description
MC Initialize() starts a Mobile-C agency and returns a handle of type MCAgency t containing the infor-
mation about the current agency. The first one specifies the port number on which an agency will listen.
The second one can specify which thread(s) to be activated in an agency and the default agent status for
incoming mobile agents.

Example

#include <stdio.h>
#include <libmc.h>

int main(int argc, char *argv[])
{
MCAgency_t agency;
int local_port = 5051;

agency = MC_Initialize(local_port, NULL);

70

printf("MobileC Started\n");
MC_Wait(agency);
return 0;

}

See Also
MC End()

71

MC MutexLock()
Synopsis
#include <libmc.h>
int MC MutexLock(MCAgency t agency, int id);

Purpose
This function locks a previously initialized Mobile-C synchronization variable as a mutex. If the mutex is
already locked, the function blocks until it is unlocked before locking the mutex and continuing.

Return Value
This function returns 0 on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description
This function locks the mutex part of a Mobile-C synchronization variable. While this is primarily used to
guard a shared resource, the behaviour is similar to the standard POSIX mutex locking. Note that although a
MobileC synchronization variable may assume the role of a mutex, condition variable, or semaphore, once
a Mobile-C synchronization variable is used as a mutex, it should not be used as anything else for the rest of
its life cycle.

Example
Please see Program 20 on page 35 in Chapter 7.

See Also
MC MutexUnlock(), MC SyncInit(), MC SyncDelete().

72

MC MutexUnlock()
Synopsis
#include <libmc.h>
int MC MutexUnlock(MCAgency t agency, int id);

Purpose
This function unlocks a locked Mobile-C synchronization variable.

Return Value
This function returns 0 on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description
This function unlocks a Mobile-C synchronization variable that was previously locked as a mutex. If the
mutex is not locked while calling this function, undefined behaviour results. Note that although a Mobile-C
may act as a mutex, condition variable, or semaphore, once it has been locked and/or unlocked as a mutex,
it should only be used as a mutex for the remainder of it’s life cycle or unexpected behaviour may result.

Example
Please see Program 20 on page 35 in Chapter 7.

See Also
MC MutexLock(), MC SyncInit(), MC SyncDelete().

73

MC PrintAgentCode()
Synopsis
#include <libmc.h>
int MC PrintAgentCode(MCAgent t agent);

Purpose
Print a mobile agent code for inspection.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent The mobile agent from which to print the code.

Description
This function prints the mobile agent code to the standard output.

Example

See Also

74

MC ResetSignal()
Synopsis
#include <libmc.h>
int MC ResetSignal(MCAgency t agency);

Purpose
This function is used to reset the Mobile-C signalling system. It is intended to be used after returning from
a call to function MC WaitSignal().

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
agency A handle to a running agency.

Description
This function is used to reset the Mobile-C signalling system. System signals are triggered by certain events
in the Mobile-C library. This includes events such as the arrival of a new message or mobile agent, and
the departure of a mobile agent, etc. If function MC WaitSignal() is used to listen for one of these events,
function MC ResetSignal() must be called in order to allow Mobile-C to resume with it’s operations.

Example

#include <stdio.h>
#include <libmc.h>

int main(int argc, char *argv[])
{

MCAgency_t agency;
MCAgent_t agent;
int dim, *extent;
double *data;
int i, j, size;
agency = MC_Initialize(5050, NULL);

printf("MobileC Started\n");
MC_SendAgentMigrationMessageFile(agency,

"test.xml",
"localhost",
5051);

MC_WaitSignal(agency, MC_RECV_AGENT);
agent = MC_FindAgentByName(agency, "mobagent3");
if (agent == NULL) {

fprintf(stderr, "Did not receive correct agent. \n");
exit(1);

}
printf("%d tasks.\n", MC_GetAgentNumTasks(agent));
for (i = 0; i < MC_GetAgentNumTasks(agent); i++) {

MC_GetAgentReturnData(
agent,
i,

75

(void**)&data,
&dim,
&extent);

printf("Task: %d\n", i);
size = 1;
printf("dim is %d\n", dim);
for (j = 0; j < dim; j++) {

size *= extent[j];
}
printf("Size: %d\n", size);
printf("Data elements: ");
for (j = 0; j < size; j++) {

printf("%f ", data[j]);
}
printf("\n\n");
free(data);
free(extent);

}
MC_ResetSignal(agency);
MC_End(agency);
return 0;

}

See Also
MC WaitSignal()

76

MC RetrieveAgent()
Synopsis
#include <libmc.h>
MCAgent t MC RetrieveAgent(MCAgency t agency);

Purpose
Retrieve the first neutral mobile agent from a mobile agent list.

Return Value
The function returns an MCAgent t object on success or NULL on failure.

Parameters
agency An agency handle.

Description
This function retrieves the first agent with status MC AGENT NEUTRAL from a mobile agent list. If there
are no mobile agents with this attribute, the return value is NULL.

Example

See Also

77

MC RetrieveAgentCode()
Synopsis
#include <libmc.h>
char *MC RetrieveAgentCode(MCAgent t agent);

Purpose
Retrieve a mobile agent code in the form of a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the code.

Description
This function retrieves a mobile agent code. The return pointer is allocated by ’malloc()’ and must be freed
by the user.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main(int argc, char *argv[])
{

MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
char *str;
int i;
MC_InitializeAgencyOptions(&options);

for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn(&options, i);

}
MC_SetThreadOff(&options, MC_THREAD_CP); /* Turn off the command prompt */

agency = MC_Initialize(
5051,
&options);

/* Retrieve the first arriving agent */
/* Note: MC_WaitRetrieveAgent() pauses the agency: We’ll need to unpause

* it later with MC_SignalReset() */
agent = MC_WaitRetrieveAgent(agency);
printf("The agent status is: %d\n", MC_GetAgentStatus(agent));
printf("This agent has %d task(s).\n", MC_GetAgentNumTasks(agent));
str = MC_GetAgentXMLString(agent);

78

printf("Agent XML String:\n%s\n", str);
free(str);
str = MC_RetrieveAgentCode(agent);
printf("Agent Code:\n%s\n", str);
free(str);
MC_ResetSignal(agency);
MC_Wait(agency);

return 0;
}

See Also

79

MC SemaphorePost()
Synopsis
#include <libmc.h>
int MC SemaphorePost(MCAgency t agency, int id);

Purpose
This function unlocks one resource from a Mobile-C semaphore, increasing its count by one.

Return Value
This function returns 0 on success, or non-zero if the id could not be found or on a semaphore error.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description
MC SemaphorePost unlocks a resourse from a previously allocated and initialized Mobile-C synchroniza-
tion variable being used as a semaphore. This function may be called multiple times to increase the count
of the semaphore up to INT MAX. Note that although a Mobile-C synchronization variable may be used
as a mutex, condition variable, or semaphore, once it is used as a semaphore, it should only be used as a
semaphore for the remainder of its life cycle.

Example
The MC SemaphorePost() function usage is very similar to the other binary space synchronization functions.
Please see Chapter 7 on page 29 and the demo at “demos/agent semaphore example/” for more information.

See Also
MC SemaphoreWait(), MC SyncInit(), MC SyncDelete().

80

MC SemaphoreWait()
Synopsis
#include <libmc.h>
int MC SemaphoreWait(MCAgency t agency, int id);

Purpose
This function allocates one resource from a Mobile-C synchronization semaphore variable.

Return Value
This function returns 0 on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description
This function allocates one resource from a previously allocated and initialized Mobile-C synchronization
semaphore. If the semaphore resource count is non-zero, the resource is immediately allocated. If the
semaphore resource count is zero, the function blocks until a resource is freed before allocating a resource
and continuing. Note that although a Mobile-C synchronization variable may be used as a mutex, condition
variable, or semaphore, once it is used as a semaphore, it should only be used as a semaphore for the re-
mainder of its life cycle.

Example
The MC SemaphorePost() function usage is very similar to the other binary space synchronization func-
tions. Please see Chapter 7 on page 29 for more information.

See Also
MC SemaphorePost(), MC SyncInit(), MC SyncDelete().

81

MC SendAgentMigrationMessage()
Synopsis
#include <libmc.h>
int MC SendAgentMigrationMessage(MCAgency t agency, char *message, char *hostname, int
port);

Purpose
Send an ACL mobile agent message to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with an agency from which to send the ACL mobile agent message.

A NULL pointer can be used to send the ACL message from an unspecified agency.
message The ACL mobile agent message to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,

i.e., 169.237.104.199 or machine.ucdavis.edu.
port The port number on which the remote agency is listening.

Description
This function is used to send an XML based ACL mobile agent message, which is a string, to a remote
agency. This function can be used without a running local agency.

Example

See Also

82

MC SendAgentMigrationMessageFile()
Synopsis
#include <libmc.h>
int MC SendAgentMigrationMessageFile(MCAgency t agency, char *filename, char *hostname,
int port);

Purpose
Send an ACL mobile agent message saved as a file to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with an agency from which to send the ACL mobile agent message.

A NULL pointer can be used to send the ACL message from an unspecified agency.
filename The ACL mobile agent message file to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,

i.e., 169.237.104.199 or machine.ucdavis.edu.
port The port number on which the remote agency is listening.

Description
This function is used to send an XML based ACL mobile agent message, which is saved as a file, to a remote
agency. This function can be used without a running local agency.

Example

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>

int main(int argc, char *argv[])
{

MCAgency_t agency;
agency = MC_Initialize(5050, NULL);

printf("MobileC Started\n");
MC_SendAgentMigrationMessageFile(agency,

"test1.xml",
"localhost",
5051);

MC_End(agency);
exit(0);

}

See Also

83

MC SetAgentStatus()
Synopsis
#include <libmc.h>
int MC SetAgentStatus(MCAgent t agent, int status);

Purpose
Set the status of a mobile agent in an agency.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
agent The mobile agent whose status is to be assigned.
status An integer representing the status to be assinged to a mobile agent.

Description
This function returns an integer of enumerated type enum MC AgentStatus e. Details about this enumer-
ated type may be found in Table A.2 on page 44.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main(int argc, char *argv[])
{

MCAgency_t agency1;
MCAgency_t agency2;
MCAgencyOptions_t options;
int i;

MCAgent_t agent;
MCAgent_t agent_copy;

MC_InitializeAgencyOptions(&options);
/* We want _all_ the threads on: EXCEPT, the command prompt thread */
for (i = 0; i < MC_THREAD_ALL; i++) {

MC_SetThreadOn(&options, i);
}
MC_SetThreadOff(&options, MC_THREAD_CP);

agency1 = MC_Initialize(
5051,
&options);

agency2 = MC_Initialize(
5052,
&options);

84

while(1) {
agent = MC_WaitRetrieveAgent(agency1);
MC_CopyAgent(&agent_copy, agent);
MC_SetAgentStatus(agent_copy, MC_WAIT_CH);
MC_AddAgent(agency2, agent_copy);
MC_ResetSignal(agency1);

}

return 0;
}

See Also

85

MC SetDefaultAgentStatus()
Synopsis
#include <libmc.h>
int MC SetDefaultAgentStatus(MCAgency t agency, int status);

Purpose
Set the default status of any incoming mobile agents.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
agency A handle to a running agency.
status An integer representing the status to be assinged to any incoming mobile agents as their default

status.

Description
This function is used to set the default agent status for all incoming agents in an agency. By default, every
incoming agent is set to status “MC WAIT CH”, but that may be changed with this function. The agent
status is an enumerated type “enum MC AgentStatus e”, which may be seen in Table A.2 on page 44.
Example

MCAgency_t agency;
agency = MC_Initialize(5050, NULL);
MC_SetDefaultAgentStatus(agency, MC_AGENT_NEUTRAL);

/* etc... */

See Also
MC GetAgentStatus()

86

MC SetThreadOff()
Synopsis
#include <libmc.h>
int MC SetThreadOff(MCAgencyOptions t ∗options, enum threadIndex e thread);

Purpose
Set a particular thread to not execute upon Mobile-C initialization.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
options An allocated MCAgencyOptions t variable.
thread A thread index.

Description
This function is used to modify the Mobile-C startup options. It is used to disable threads that may otherwise
be enabled. The threads which may be modified are

MC THREAD AI : Agent Initializing Thread - Create agent from incoming messages.
MC THREAD AM : Agent Managing Thread - Manage active agents.
MC THREAD CL : Connection Listening Thread - Listen incoming connections.
MC THREAD MR : Message Receiving Thread - Handle incoming connections and recieve agent mes-

sages.
MC THREAD MS : Message Sending Thread - Handle outgoing connections and send agent mes-

sages.
MC THREAD CP : Command Prompt Thread - Handle an interactive user command prompt.

Example

MCAgencyOptions_t options;
MCAgency_t agency;

/* Turn the listen thread off. We will receive our messages
in another method. */

MC_SetThreadOff(&options, MC_THREAD_AI);

/* Start the agency with no listen thread*/
agency = MC_Initialize(5050, &options);

/* etc ... */

See Also
MC SetThreadOn()

87

MC SetThreadOn()
Synopsis
#include <libmc.h>
int MC SetThreadOn(MCAgencyOptions t ∗options, enum threadIndex e thread);

Purpose
Sets a particular thread to execute upon Mobile C initialization.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
options An allocated MCAgencyOptions t variable.
thread A thread index.

Description
This function is used to modify the Mobile-C startup options. It is used to enable threads that may otherwise
be disabled. The threads which may be modified are

MC THREAD AI : Agent Initializing Thread - Create agent from incoming messages.
MC THREAD AM : Agent Managing Thread - Manage active agents.
MC THREAD CL : Connection Listening Thread - Listen incoming connections.
MC THREAD MR : Message Receiving Thread - Handle incoming connections and recieve agent mes-

sages.
MC THREAD MS : Message Sending Thread - Handle outgoing connections and send agent mes-

sages.
MC THREAD CP : Command Prompt Thread - Handle an interactive user command prompt.

Example

MCAgencyOptions_t options;
MCAgency_t agency;

/* Turn the command prompt thread on */
MC_SetThreadOn(&options, MC_THREAD_CP);

/* Start the agency with a command prompt on port 5050 */
agency = MC_Initialize(5050, &options);

/* etc ... */

See Also
MC SetThreadOff()

88

MC Steer()
Synopsis
#include <libmc.h>
int MC Steer(MCAgency t attr, int(*)(void* data) funcptr, void* arg);

Purpose
The MC Steer function initialized and runs a function containing an algorithm. The function enables the
steering functionality of the algorithm so that it may accept command during runtime to change the ex-
ecution of the algorithm. For more information, please see the example and the demo located in the de-
mos/steer example/ directory.
Return Value
The function returns 0 on success, or a non-zero error code on failure.

Description
The MC Steer function is designed execute an algorithm in a fashion which enables that algorithm to be
steered or modified on-the-fly during runtime. See the demo and the example for more details.

Example

#include <stdio.h>
#include <libmc.h>
#ifdef _WIN32
#include <windows.h>
#endif

int algorithm(void* boo);

int main() {
MCAgency_t agency;
int local_port = 5050;

agency = MC_Initialize(local_port, NULL);

MC_Steer(
agency,
&algorithm,
NULL
);

MC_End(agency);
return 0;

}

int algorithm(void* boo)
{
int i=0;
MC_SteerCommand_t command;
while(1) {

#ifndef _WIN32
sleep(1);

#else

89

Sleep(1000);
#endif

printf("%d \n", i);
i++;
command = MC_SteerControl();
if(

command == MC_RESTART ||
command == MC_STOP

)
{
return 0;

}
}

}

See Also
MC SteerControl()

90

MC SteerControl()
Synopsis
#include <libmc.h>
int MC SteerControl(void);

Purpose
This function is used to enable Mobile-C as a steerable computational platform. See the example following
for more information, as well as the demo provided in the directory demos/steer example.

Return Value
This function returns the current steer command. The command is of type enum MC Steer Command e.
This enumerated type contains the following definitions:

MC RUN Continue the algorithm.
MC SUSPEND Pause the algorithm.
MC RESTART Restart the algorithm from the beginning.
MC STOP Stop the algorithm.

Description
MC SteerControl controls the execution of an algorithm in binary space. This function is meant to retrieve
the current requested command for the algorithm, but it is up to the algorithm implementation to actually
implement these behaviours. See the example and the demo for more details.
Example

#include <stdio.h>
#include <libmc.h>
#ifdef _WIN32
#include <windows.h>
#endif

int algorithm(void* boo);

int main() {
MCAgency_t agency;
int local_port = 5050;

agency = MC_Initialize(local_port, NULL);

MC_Steer(
agency,
&algorithm,
NULL
);

MC_End(agency);
return 0;

}

int algorithm(void* boo)
{
int i=0;
MC_SteerCommand_t command;
while(1) {

91

#ifndef _WIN32
sleep(1);

#else
Sleep(1000);

#endif
printf("%d \n", i);
i++;
command = MC_SteerControl();
if(

command == MC_RESTART ||
command == MC_STOP

)
{
return 0;

}
}

}

See Also
MC Steer()

92

MC SyncDelete()
Synopsis
#include <libmc.h>
int MC SyncDelete(int id);

Purpose
Delete a previously initialized synchronization variable.

Return Value
This function returns 0 on success and nonzero otherwise.

Parameters
id The id of the condition variable to delete.

Description
This function is used to delete and deallocate a previously initialized Mobile-C synchronization variable.

Example
Please see Chapter 7 on synchronization on page 29 for more details about using this function.

See Also
MC SyncInit().

93

MC SyncInit()
Synopsis
#include <libmc.h>
int MC SyncInit(MCAgency t agency, int id);

Purpose
Initialize a new synchronization variable.

Return Value
This function returns the allocated id of the synchronization variable.

Parameters
agency The agency in which the new synchronization variable should be initialized.
id A requested synchronization variable id. A random id will be assigned if the value passed is 0

or if there is a conflicting id.

Description
This function initializes a generic Mobile-C synchonization node for use by agents and the agency. Each
node contains a mutex, a condition variable, and a semaphore. Upon initialization, each variable is initial-
ized to default values: The mutex is unlocked and the semaphore has a value of zero. Each node may be
used as a mutex, condition variable, or semaphore. Though it is possible to use multiple synchronization
variables in a single node, this is discouraged as it may lead to unpredictable results.

Example
Please see Chapter 7 on synchronization on page 29 for more details about using this function.

See Also
MC CondSignal(), MC CondWait(), MC MutexLock(), MC MutexUnlock(), MC SemaphorePost(),
MC SemaphoreWait(), MC SyncDelete().

94

MC TerminateAgent()
Synopsis
#include <libmc.h>
int MC TerminateAgent(MCAgent t agent);

Purpose
Terminate the execution of a mobile agent in an agency.

Return Value
The function returns 0 on success and an error code on failure.

Parameters
agent A valid mobile agent.

Description
This function halts a running mobile agent. The Ch interpreter is left intact. The mobile agent may still
reside in the agency in MC AGENT NEUTRAL mode if the mobile agent is tagged as ’persistent’, or is
terminated and flushed otherwise.

Example
This function is identical to the agent-space counterpart. Please see the example listed under mc TerminateAgent()
on page 133.

See Also

95

MC Wait()
Synopsis
#include <libmc.h>
int MC Wait(MCAgency t agency);

Purpose
Cause the calling thread to wait indefinitely on an agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with a running agency.

Description
This function simply waits for the agency. It must be run on a handle that is attached to an agency that has
already been started with the function MC Initialize().

Example

#include <stdio.h>
#include <libmc.h>

int main(int argc, char *argv[])
{
MCAgency_t agency;
int local_port = 5051;

agency = MC_Initialize(local_port, NULL);

printf("MobileC Started\n");
MC_Wait(agency);
return 0;

}

See Also

96

MC WaitAgent()
Synopsis
#include <libmc.h>
int MC WaitAgent(MCAgency t agency);

Purpose
Cause the calling thread to wait until a mobile agent is received.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with a running agency.

Description
This function waits on an agency and wakes up the addition of a new mobile agent to the agency.

Example

See Also

97

MC WaitRetrieveAgent()
Synopsis
#include <libmc.h>
MCAgent t MC WaitRetrieveAgent(MCAgency t agency);

Purpose
Block the calling thread until a mobile agent arrives, and return the mobile agent instead of executing it.

Return Value
The function returns a mobile agent on success and a NULL on failure.

Parameters
agency A handle associated with a running agency.

Description
This function waits on an agency and wakes up the addition of a new mobile agent to the agency. It will
then remove the mobile agent from the agency and return it.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main(int argc, char *argv[])
{

MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
char *str;
int i;
MC_InitializeAgencyOptions(&options);

for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn(&options, i);

}
MC_SetThreadOff(&options, MC_THREAD_CP); /* Turn off the command prompt */

agency = MC_Initialize(
5051,
&options);

/* Retrieve the first arriving agent */
/* Note: MC_WaitRetrieveAgent() pauses the agency: We’ll need to unpause

* it later with MC_SignalReset() */
agent = MC_WaitRetrieveAgent(agency);
printf("The agent status is: %d\n", MC_GetAgentStatus(agent));
printf("This agent has %d task(s).\n", MC_GetAgentNumTasks(agent));
str = MC_GetAgentXMLString(agent);

98

printf("Agent XML String:\n%s\n", str);
free(str);
str = MC_RetrieveAgentCode(agent);
printf("Agent Code:\n%s\n", str);
free(str);
MC_ResetSignal(agency);
MC_Wait(agency);

return 0;
}

See Also

99

MC WaitSignal()
Synopsis
#include <libmc.h>
int MC WaitSignal(MCAgency t agency, int signals);

Purpose
This function is used to block the execution of a Mobile-C library application until the event of a signal.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters

agency A handle to a running agency.
signals A bitwise-or combination of signals to wait on.

Description
This function is used to block the execution of an application using the Mobile-C library until a given signal
is received as specfied by the parameter signals. Currently implemented signals that may be waited on are:

MC RECV CONNECTION : Continue after a connection is initialized.
MC RECV MESSAGE : Continue after a message is received.
MC RECV AGENT : Continue after an agent is received.
MC EXEC AGENT : Continue after an agent is finished executing.
MC ALL SIGNALS : Continue after any one of the above events occurs.

In order to wait on a custom combination of signals, the bitwise ’or operator’ may be used to specify com-
binations of signals.

Example

/* More code here. */

/* Now we wait until we receive a message or mobile agent. */
MC_WaitSignal(agency, RECV_MESSAGE | RECV_AGENT);

/* At this point, a message or mobile agent has been received. */

/* Perform operations on the new message or mobile agent here. */

/* Resume the Mobile-C library */
MC_ResetSignal(agency);

/* More code here. */

The above piece of code blocks execution until either a RECV MESSAGE or a RECV AGENT event oc-
curs. The function MC ResetSignal() must be invoked at some point after returning from MC WaitSignal()

100

in order for Mobile-C to resume normal operations.

See Also
MC ResetSignal()

101

Appendix B

Mobile-C API in the C/C++ Script Space

The prototypes of Mobile-C functions used in the C/C++ script space are declared in agent.c through an
Embedded Ch function, Ch DeclareFunc() [12].

Furthermore, a number of enumerations, data types, and special variables are declared for each agent
interpreter by the agency. These enums, data types, special variables, and functions are all considered
“built-in” in agent-space as no header file or extra code is needed to access them.

All enumerations and special variables may be found in tables B.1, B.2, and B.3, respectively. The
function prototypes and defined data type shown in Tables B.4 and B.5 are listed in agent space api.txt
for user’s information. agent.c and agent space api.txt can be found in directories ’src’ and ’src/include’,
respectively.

102

Table B.1: enum MC SteerCommand e : This enumerated type lists commands that may be used with the
mc SendSteerCommand() function.

Data Type Description
MC RUN Start/continue an algorithm.
MC SUSPEND Pause an algorithm.
MC RESTART Restart an algorithm for initial values.
MC STOP Stop an algorithm.

Table B.2: enum mc AgentStatus e: This enumerated type defines the current execucion state of a mobile
agent.

0 , MC WAIT CH : Mobile agent is currently waiting to be executed.
1 , MC WAIT MESSGSEND : Mobile agent is currently waiting to be exported to another agency.
2 , MC AGENT ACTIVE : Mobile agent is currently being executed.
3 , MC AGENT NEUTRAL : Mobile agent is waiting for an unspecified reason.
4 , MC AGENT SUSPENDED : Mobile agent is currently being suspended.
5 , MC WAIT FINISHED : Mobile agent has finished execution and is waiting for removal.

Table B.3: A table of pre-defined agent-space variables. These are considered ’built-in’ in agent space as no
additional header file is required to access these variables.

Variable Name Description
int mc agent id Holds the unique integer id assigned by the Agency to the agent.
char mc agent name[] Holds the agent’s name.
void* mc current agent Holds a pointer itself.
char mc host name[] Holds the agency’s hostname.
int mc host port Holds the port of the current agency.
int mc task progress Contains the current task number of the agent.
int mc num tasks Contains the total number of tasks an agent has.

Table B.4: Data type for functions in the C/C++ script space.

Data Type Description
MCAgent t A void pointer for a mobile agent.

103

Table B.5: Functions in the C/C++ script space.
Function Description
mc CondReset() Reset a Mobile-C condition variable.
mc CondSignal() Signal another agent that is waiting on a condition variable.
mc CondWait() Cause the calling agent or thread to wait on a Mobile C

condition variable with the ID specified by the argument.
mc FindAgentByID() Find a mobile agent by its ID in an agency.
mc FindAgentByName() Find a mobile agent by its name in an agency.
mc GetAgentStatus() Get the status of a mobile agent in an agency.
mc GetAgentXMLString() Retrieve a mobile agent message in XML format as a

character string.
mc MutexLock() Lock a previously initialized Mobile-C synchronization

variable as a mutex.
mc MutexUnlock() Unlock a locked Mobile-C synchronization variable.
mc PrintAgentCode() Print a mobile agent code for inspection.
mc RetrieveAgent() Retrieve the first neutral mobile agent from the mobile

agent list.
mc RetrieveAgentCode() Retrieve a mobile agent code in the form of a

character string.
mc SemaphorePost() Unlock one resource from a Mobile-C semaphore.
mc SemaphoreWait() Allocate one resource from a Mobile-C synchronization

semaphore variable.
mc SendAgentMigrationMessage() Send an ACL mobile agent message to a remote agency.
mc SendAgentMigrationMessageFile() Send an ACL mobile agent message saved as a file

to a remote agency.
mc SetAgentStatus() Set the status of a mobile agent in an agency.
mc SetDefaultAgentStatus() Assign a user defined default status to all incoming

mobile agents.
mc SyncDelete() Delete a previously initialized synchronization variable.
mc SyncInit() Initialize a new synchronization variable.
mc TerminateAgent() Terminate the execution of a mobile agent in an agency.

104

mc AddAgent()
Synopsis
#include <libmc.h>
int mc AddAgent(MCAgent t agent);

Purpose
Add a mobile agent into an agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent An initialized mobile agent.

Description
This function adds a mobile agent to an agency.

Example
Please see the example for MC AddAgent() on page 46.

See Also

105

mc CallAgentFunc()
Synopsis
#include <libmc.h>
int mc CallAgentFunc(MCAgent t agent, const char* funcName, void* returnV al, void* varg);

Purpose
This function is used to call a function that is defined in an agent.

Return Value
This function returns 0 on success, or a non-zero error code on failure.

Parameters
agent The agent in which to call a function.
funcName The function to call.
returnV al (Output) The return value of the agent function.
varg An argument to pass to the function.

Description
This function enables a program to treat agents as libraries of functions. Thus, an agent may provide a
library of functions that may be called from binary space with this function, or from another agent by the
agent-space version of this function.

Example

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA number_of_elements="0" name="no-return" complete="0" server="localhost:5050">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
struct arg_struct {

int a;
int b;

};
int main()
{

MCAgent_t agent;
int retval;
/* Search Return Variables */
char** agentNames;

106

char** serviceNames;
int *agentIDs;
int numResults;

/* Argument Struct */
struct arg_struct arg;

/* Search for addition service */
printf("\n\n\nSearching for addition service.\n");
mc_SearchForService(

"addition",
&agentNames,
&serviceNames,
&agentIDs,
&numResults);

printf("Done searching.\n");
if (numResults < 1) {

printf("No agents with service ’addition’ found.\n");
exit(0);

}

/* Just get the first hit */
printf("Using agent %s for addition.\n", agentNames[0]);
agent = mc_FindAgentByID(agentIDs[0]);

arg.a = 44;
arg.b = 45;
mc_CallAgentFunc(agent, "addition", &retval, &arg);
printf("Result of addition %d + %d is %d.\n", arg.a, arg.b, retval);

/* Now search for multiplication service */
printf("\n\n Searching for Multiplication service...\n");
mc_SearchForService(

"multiplication",
&agentNames,
&serviceNames,
&agentIDs,
&numResults);

if (numResults < 1) {
printf("No agents with service ’multiplication’ found.\n");
exit(0);

}

printf("Using agent %s for multiplication.\n", agentNames[0]);
agent = mc_FindAgentByID(agentIDs[0]);
mc_CallAgentFunc(agent, "multiplication", &retval, &arg);
printf("Result of multiplication %d * %d is %d.\n", arg.a, arg.b, retval);

/* Now lets try to deregister a service */
mc_DeregisterService(

agentIDs[0],
serviceNames[0]
);

return 0;
}

]]>
</AGENT_CODE>

107

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

See Also
MC CallAgentFunc()

108

mc CondReset()
Synopsis
int mc CondReset(int id);

Purpose
Reset a Mobile-C Condition variable for re-use.

Return Value
This function returns 0 upon success or non-zero if the condition variable was not found.

Parameters

id The id of the condition variable to signal.

Description
This function resets a used condition variable, setting it’s state back to an unsignalled state. A Mobile-C
condition variable will remain in a signalled state indefinitely until this function is called.

Example
See Program 18 on page 33 and Program 19 on page 34 in Chapter 7.

See Also
mc CondDelete(), mc CondInit(), mc CondSignal(), mc CondWait().

109

mc CondSignal()
Synopsis
int mc CondSignal(int id);

Purpose
Signal another mobile agent which is waiting on a condition variable.

Return Value
This function returns 0 if the condition variable is successfully found and signalled. It returns non-zero if
the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description
This function is used to signal another mobile agent or thread that is waiting on a Mobile-C condition vari-
able. The function that calls mc CondSignal() must know beforehand the id of the condition variable an
agent may be waiting on. Note that although a MobileC synchronization variable may act as a mutex, con-
dition variable, or semaphore, once it is used as a condition variable, it should only be used as a condition
variable for the remainder of it’s life cycle.

Example
See Program 18 on page 33 and Program 19 on page 34 in Chapter 7.
See Also
mc CondDelete(), mc CondInit(), mc CondSignal().

110

mc CondWait()
Synopsis
int mc CondWait(int id);

Purpose
Cause the calling mobile agent or thread to wait on a Mobile-C condition variable with the id specified by
the argument.

Return Value
This function returns 0 upon successful wakeup or non-zero if the condition variable was not found.

Parameters

id The id of the condition variable to signal.

Description
This function blocks until the condition variable on which it is waiting is signalled. If an invalid id is
specified, the function returns 1 and does not block. The function is designed to enable synchronization
possibilities between threads and mobile agents without using poll-waiting loops. Note that although a Mo-
bileC synchronization variable may act as a mutex, condition variable, or semaphore, once it is used as a
condition variable, it should only be used as a condition variable for the remainder of it’s life cycle.

Example
See Program 18 on page 33 and Program 19 on page 34 in Chapter 7.

See Also
mc CondDelete(), mc CondInit(), mc CondSignal().

111

mc FindAgentByID()
Synopsis
MCAgent t MC FindAgentByID(int id);

Purpose
Find a mobile agent by its ID number in a given agency.

Return Value
The function returns an MCAgent t object on success or NULL on failure.

Parameters
id An integer representing a mobile agent’s ID number.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s ID number.

Example

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA number_of_elements="0" name="no-return" complete="0" server="localhost:5050">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
struct arg_struct {

int a;
int b;

};
int main()
{

MCAgent_t agent;
int retval;
/* Search Return Variables */
char** agentNames;
char** serviceNames;
int *agentIDs;
int numResults;

/* Argument Struct */
struct arg_struct arg;

112

/* Search for addition service */
printf("\n\n\nSearching for addition service.\n");
mc_SearchForService(

"addition",
&agentNames,
&serviceNames,
&agentIDs,
&numResults);

printf("Done searching.\n");
if (numResults < 1) {

printf("No agents with service ’addition’ found.\n");
exit(0);

}

/* Just get the first hit */
printf("Using agent %s for addition.\n", agentNames[0]);
agent = mc_FindAgentByID(agentIDs[0]);

arg.a = 44;
arg.b = 45;
mc_CallAgentFunc(agent, "addition", &retval, &arg);
printf("Result of addition %d + %d is %d.\n", arg.a, arg.b, retval);

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

See Also

113

mc FindAgentByName()
Synopsis
MCAgent t mc FindAgentByName(const char *name);

Purpose
Find a mobile agent by its name in an agency.

Return Value
The function returns an MCAgent t object on success or NULL on failure.

Parameters
name A character string containing the mobile agent’s name.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s given name.

Example

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5050">
</DATA>

<AGENT_CODE>
<![CDATA[

#pragma package <chmobilec>
printf("At the very beginning of code.");
#include <stdio.h>
int main()
{

MCAgent_t tmp;
printf("The sample persistent agent has now arrived.\n");
tmp = mc_FindAgentByName("mobagent1");
printf("Agent mobagent1 is at address %x\n", tmp);
if (tmp == NULL) {

printf("Agent not found. Terminating...\n");
return 0;

}
mc_TerminateAgent(tmp);
return 0;

}
]]>

114

</AGENT_CODE>
</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

See Also

115

mc GetAgentStatus()
Synopsis
#include <mobilec.h>
int mc GetAgentStatus(MCAgent t agent);

Purpose
Get the status of a mobile agent in an agency.

Return Value
This function returns an enumerated value representing the current status of a mobile agent. See Table B.2
on page 103.

Parameters
agent The mobile agent from which to retrieve status information.

Description
This function gets a mobile agent’s status. The status is used to determine the mobile agent’s current state
of execution.

Example
This function is identical to the binary space version, MC GetAgentStatus(). Please see the documentation
for MC GetAgentStatus on page 65 for an example.
See Also

116

mc GetAgentXMLString()
Synopsis
char *mc GetAgentXMLString(MCAgent t agent);

Purpose
Retrieve a mobile agent message in XML format as a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the XML formatted message.

Description
This function retrieves a mobile agent message in XML format as a character string. The return pointer is
allocated by ’malloc()’ and must be freed by the user.

Example
This function has identical behaviour with the its binary-space counterpart, MC GetAgentXMLString().
Please see the documentation for MC GetAgentXMLString() on page 68
See Also

117

mc MutexLock()
Synopsis
int mc MutexLock(int id);

Purpose
This function locks a previously initialized Mobile-C synchronization variable as a mutex. If the mutex is
already locked, the function blocks until it is unlocked before locking the mutex and continuing.

Return Value
This function returns 0 on success, or non-zero if the id could not be found.

Parameters

id The id of the synchronization variable to lock.

Description
This function locks the mutex part of a Mobile-C synchronization variable. While this is primarily used to
guard a shared resource, the behaviour is similar to the standard POSIX mutex locking. Note that although a
Mobile-C synchronization variable may assume the role of a mutex, condition variable, or semaphore, once
a Mobile-C synchronization variable is used as a mutex, it should not be used as anything else for the rest of
its life cycle.

Example
Please see Program 16 on page 31, Program 17 on page 32, and Chapter 7 on page 29 for more details.

See Also
mc MutexUnlock(), mc SyncInit(), mc SyncDelete().

118

mc MutexUnlock()
Synopsis
int mc MutexUnlock(int id);

Purpose
This function unlocks a locked Mobile-C synchronization variable.

Return Value
This function returns 0 on success, or non-zero if the id could not be found.

Parameters

id The id of the synchronization variable to lock.

Description
This function unlocks a Mobile-C synchronization variable that was previously locked as a mutex. If the
mutex is not locked while calling this function, undefined behaviour results. Note that although a Mobile-C
may act as a mutex, condition variable, or semaphore, once it has been locked and/or unlocked as a mutex,
it should only be used as a mutex for the remainder of it’s life cycle or unexpected behaviour may result.

Example
Please see Program 16 on page 31, Program 17 on page 32, and Chapter 7 on page 29 for more details.

See Also
mc MutexLock(), mc SyncInit(), mc SyncDelete().

119

mc PrintAgentCode()
Synopsis
int mc PrintAgentCode(MCAgent t agent);

Purpose
Print a mobile agent code for inspection.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent The mobile agent from which to print the code.

Description
This function prints the mobile agent code to the standard output.

Example

See Also

120

mc RetrieveAgent()
Synopsis
MCAgent t mc RetrieveAgent(void);

Purpose
Retrieve the first neutral mobile agent from a mobile agent list.

Return Value
The function returns an MCAgent t object on success or NULL on failure.

Parameters
void This function does not take any parameters.

Description
This function retrieves the first agent with status MC AGENT NEUTRAL from a mobile agent list. If there
are no mobile agents with this attribute, the return value is NULL.

Example

See Also

121

mc RetrieveAgentCode()
Synopsis
char *mc RetrieveAgentCode(MCAgent t agent);

Purpose
Retrieve a mobile agent code in the form of a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the code.

Description
This function retrieves a mobile agent code. The return pointer is allocated by ’malloc()’ and must be freed
by the user.

Example
Please see the example under MC RetrieveAgentCode() on page 78.

See Also

122

mc SemaphorePost()
Synopsis
int mc SemaphorePost(int id);

Purpose
This function unlocks one resource from a Mobile-C semaphore, increasing its count by one.

Return Value
This function returns 0 on success, or non-zero if the id could not be found or on a semaphore error.

Parameters

id The id of the synchronization variable to lock.

Description
mc SemaphorePost unlocks a resource from a previously allocated and initialized Mobile-C synchroniza-
tion variable being used as a semaphore. This function may be called multiple times to increase the count
of the semaphore up to INT MAX. Note that although a Mobile-C synchronization variable may be used
as a mutex, condition variable, or semaphore, once it is used as a semaphore, it should only be used as a
semaphore for the remainder of its life cycle.

Example
The MC SemaphorePost() function usage is very similar to the other binary space synchronization functions.
Please see Chapter 7 on page 29 and the demo at “demos/agent semaphore example/” for more information.

See Also
mc SemaphoreWait(), mc SyncInit(), mc SyncDelete().

123

mc SemaphoreWait()
Synopsis
#include <libmc.h>
int mc SemaphoreWait(int id);

Purpose
This function allocates one resource from a MobileC synchronization semaphore variable.
Return Value
This function returns 0 on success, or non-zero if the id could not be found.

Parameters

id The id of the synchronization variable to lock.

Description
This function allocates one resource from a previously allocated and initialized MobileC synchronization
semaphore. If the semaphore resource count is non-zero, the resource is immediately allocated. If the
semaphore resource count is zero, the function blocks until a resource is freed before allocating a resource
and continuing.

Note that although a MobileC synchronization variable may be used as a mutex, condition variable, or
semaphore, once it is used as a semaphore, it should only be used as a semaphore for the remainder of its
life cycle.
Example
The MC SemaphorePost() function usage is very similar to the other binary space synchronization functions.
Please see Chapter 7 on page 29 and the demo at “demos/agent semaphore example/” for more information.

See Also
mc SemaphorePost(), mc SyncInit(), mc SyncDelete().

124

mc SendAgentMigrationMessage()
Synopsis
int mc SendAgentMigrationMessage(char *message, char *hostname, int port);

Purpose
Send an ACL mobile agent message to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
message The ACL mobile agent message to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,

i.e., 169.237.104.199 or machine.ucdavis.edu.
port The port number on which the remote agency is listening.

Description
This function is used to send an XML based ACL mobile agent message, which is a string, to a remote
agency.

Example

See Also

125

mc SendAgentMigrationMessageFile()
Synopsis
int mc SendAgentMigrationMessageFile(const char *filename, const char *hostname, int port);

Purpose
Send an ACL mobile agent message saved as a file to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
filename The ACL mobile agent message file to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,

i.e., 169.237.104.199 or machine.ucdavis.edu.
port The port number on which the remote agency is listening.

Description
This function is used to send an XML based ACL mobile agent message, which is saved as a file, to a remote
agency.

Example
Please see the example for MC SendAgentMigrationMessageFile() on page 83.
See Also

126

mc SendSteerCommand()
Synopsis
#include <libmc.h>
int mc SendSteerCommand(MCAgency t attr, int(*)(void* data) funcptr, void* arg);

Purpose
The mc SendSteerCommand function sends a computational steering command to the algorithm at the
agent’s current agency.
Return Value
The function returns 0 on success, or a non-zero error code on failure.

Description
This function enables mobile agents to send steer commands to steering-enables algorithms running at the
agent’s local agency. See the demo at demos/steer example/ for more details.

Example

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>resume_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA name="no-return"

complete="0"
server="localhost:5050">

</DATA>
<AGENT_CODE>
<![CDATA[

#include <stdio.h>
int main() {

printf("Resuming Agent...");
mc_SendSteerCommand(MC_RUN);
return 0;

}
]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>
</GAF_MESSAGE>

See Also
MC Steer(), MC SteerControl()

127

mc SetAgentStatus()
Synopsis
int mc SetAgentStatus(MCAgent t agent, int status);

Purpose
Set the status of a mobile agent in an agency.

Return Value
This function returns 0 on success and non-zero otherwise.
Parameters

agent The mobile agent whose status is to be assigned.
status An integer representing the status to be assinged to a mobile agent.

Description
This function returns an integer of enumerated type enum MC AgentStatus e. Details about this enumer-
ated type may be found in Table B.2 on page 103.

Example
Please see the example for MC SetAgentStatus() on page 84.

See Also

128

mc SetDefaultAgentStatus()
Synopsis
int mc SetDefaultAgentStatus(int status);

Purpose
Set the default status of any incoming mobile agents.

Return Value
This function returns 0 on success and non-zero otherwise.
Parameters

status An integer representing the status to be assinged to any incoming mobile agents as their default
status.

Description
This function sets the default status of any incoming mobile agents by one of the enumerated values of type
enum mc AgentStatus e. See Table B.2 on page 103 for a complete listing of the enumerated type.
Example
Please see the example for MC SetDefaultAgentStatus() on page 86.
See Also

129

mc SyncDelete()
Synopsis
int mc SyncDelete(int id);

Purpose
Delete a previously initialized synchronization variable.

Return Value
This function returns 0 on success and nonzero otherwise.

Parameters
id The id of the condition variable to delete.

Description
This function is used to delete and deallocate a previously initialized Mobile-C synchronization variable.

Example
Please see the example for MC SyncDelete() on page 93.

See Also
mc SyncInit().

130

mc SyncInit()
Synopsis
int mc SyncInit(int id);

Purpose
Initialize a new synchronization variable for agents to wait on.

Return Value
This function returns the allocated id of the synchronization variable.

Parameters
id A requested synchronization variable id. A random id will be assigned if the value passed is 0

or if there is a conflicting id.

Description
This function initializes and registers a new MobileC synchronization variable. Mobile-C Synchronization
variables may be used as a mutex, a condition variable (with an associated mutex), or a semaphore. The
purpose of the Mobile-C synchronization variables is to synchronize the execution of agents with each other,
as well as the excution of agents with their respective agencies.

Example

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">

<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>

<AGENT_CODE>
<![CDATA[

#include <stdio.h>
int main()
{

int mutex_id;
printf("Sleep agent has arrived.\n");
mutex_id = mc_SyncInit(55);
if (mutex_id != 55) {

printf("Possible error. Aborting...\n");
exit(1);

}
printf("This is agent 1.\n");
printf("Agent 1: I am locking the mutex now.\n");
mc_MutexLock(mutex_id);

131

printf("Agent 1: Mutex locked. Perform protected operations here\n");
printf("Agent 1: Waiting for 5 seconds...\n");
sleep(5);
printf("Agent 1: Unlocking mutex now...\n");
mc_MutexUnlock(mutex_id);

return 0;
}

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

See Also
mc CondSignal(), mc CondWait(), mc MutexLock(), mc MutexUnlock(), mc SemaphorePost(), mc SemaphoreWait(),
mc SyncDelete().

132

mc TerminateAgent()
Synopsis
int mc TerminateAgent(MCAgent t agent);

Purpose
Terminate the execution of a mobile agent in an agency.

Return Value
The function returns 0 on success and an error code on failure.

Parameters
agent A valid mobile agent.

Description
This function halts a running mobile agent. The Ch interpreter is left intact. The mobile agent may still
reside in the agency in MC AGENT NEUTRAL mode if the mobile agent is tagged as ’persistent’, or is
terminated and flushed otherwise.

Example

<?xml version="1.0"?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5050">
</DATA>

<AGENT_CODE>
<![CDATA[

#pragma package <chmobilec>
printf("At the very beginning of code.");
#include <stdio.h>
int main()
{

MCAgent_t tmp;
printf("The sample persistent agent has now arrived.\n");
tmp = mc_FindAgentByName("mobagent1");
printf("Agent mobagent1 is at address %x\n", tmp);
if (tmp == NULL) {

printf("Agent not found. Terminating...\n");
return 0;

}
mc_TerminateAgent(tmp);
return 0;

}

133

]]>
</AGENT_CODE>

</TASK>
</AGENT_DATA>

</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

See Also

134

Index

Ch CallFuncByName(), 18

MC AddAgent(), 46
mc AddAgent(), 105
MC AGENT ACTIVE, 44
mc agent id, 103
mc agent name, 103
MC AGENT NEUTRAL, 44
MC AGENT SUSPENDED, 44
MC AgentExecEngine(), 17
MC AgentStatus e, 44
MC AgentType e, 44
MC ALL SIGNALS, 44
MC CallAgentFunc(), 18, 48
mc CallAgentFunc(), 22, 106
MC ChInitializeOptions(), 50
MC CondReset(), 51
mc CondReset(), 109
MC CondSignal(), 52
mc CondSignal(), 110
MC CondWait(), 53
mc CondWait(), 111
MC CopyAgent(), 54
mc current agent, 26, 27, 103
MC End(), 6, 56
MC EXEC AGENT, 44
MC FindAgentByID(), 57
mc FindAgentByID(), 22, 112
MC FindAgentByName(), 17, 58
mc FindAgentByName(), 21, 114
MC GetAgentExecEngine(), 17, 60
MC GetAgentNumTasks(), 62
MC GetAgentReturnData(), 63
MC GetAgentStatus(), 65
mc GetAgentStatus(), 116
MC GetAgentType(), 67
MC GetAgentXMLString(), 68
mc GetAgentXMLString(), 117
mc host name, 13, 14, 103
mc host port, 103

MC Initialize(), 6, 70
MC LOCAL AGENT, 44
MC MutexLock(), 72
mc MutexLock(), 118
MC MutexUnlock(), 73
mc MutexUnlock(), 119
mc num tasks, 103
MC PrintAgentCode(), 74
mc PrintAgentCode(), 120
MC RECV AGENT, 44
MC RECV CONNECTION, 44
MC RECV MESSAGE, 44
mc RegisterService(), 22
MC REMOTE AGENT, 44
MC ResetSignal(), 75
MC RESTART, 103
MC RetrieveAgent(), 77
mc RetrieveAgent(), 121
MC RetrieveAgentCode(), 78
mc RetrieveAgentCode(), 122
MC RETURN AGENT, 44
MC RUN, 103
mc SearchForService(), 22
MC SemaphorePost(), 80
mc SemaphorePost(), 123
MC SemaphoreWait(), 81
mc SemaphoreWait(), 124
MC SendAgentMigrationMessage(), 82
mc SendAgentMigrationMessage(), 125
MC SendAgentMigrationMessageFile(), 6, 83
mc SendAgentMigrationMessageFile(), 126
mc SendSteerCommand(), 127
MC SetAgentStatus(), 84
mc SetAgentStatus(), 128
MC SetDefaultAgentStatus(), 86
mc SetDefaultAgentStatus(), 129
MC SetThreadOff(), 87
MC SetThreadOn(), 88
MC Steer(), 89
MC SteerControl(), 91

135

MC STOP, 103
MC SUSPEND, 103
MC SyncDelete(), 93
mc SyncDelete(), 130
MC SyncInit(), 29, 94
mc SyncInit(), 29, 131
mc task progress, 103
MC TerminateAgent(), 95
mc TerminateAgent(), 21, 133
MC THREAD AI, 44
MC THREAD ALL, 44
MC THREAD AM, 44
MC THREAD CL, 44
MC THREAD CP, 44
MC THREAD MR, 44
MC THREAD MS, 44
MC Wait(), 6, 96
MC WAIT CH, 44
MC WAIT FINISHED, 44
MC WAIT MESSGSEND, 44
MC WaitAgent(), 97
MC WaitRetrieveAgent(), 98
MC WaitSignal(), 100
MCAgencyOptions t, 6
MCAgent t, 103

persistent, 17

136

	Introduction
	Mobile-C Library Installation
	Requirements
	Installation on Unix
	Install the Mobile-C library

	Installation on Windows
	Building the Mobile-C Library

	Installing the Mobile-C Security Module

	Getting Started
	Compilation on Unix
	Compilation on Windows
	Overview of Sample Application Programs
	Execution of Sample Applications
	Architecture of the Mobile-C Library
	Architecture of the Mobile-C Library
	Implementation of the Mobile-C Library

	Mobile-C Agent Migration Message Format
	General Message Format
	Multiple Tasks with a Single Code Block
	Multiple Tasks with Multiple Code Blocks

	Interface between Binary and Mobile Agent Space
	Invoke a Mobile Agent Space Function from Binary Space

	Extend Mobile-C Functionality to Mobile Agent Space
	Terminate Mobile Agent Execution from Mobile Agent Space
	Invoke a Registered Service from Mobile Agent Space

	Synchronization Support in the Mobile-C library
	Synchronization in Mobile Agent Space
	Synchronization Between Binary and Agent Spaces
	Mobile-C Execution with Multiple Agencies

	Mobile-C Security Module
	Security Module Architecture and Overview
	Enabling the Security Module
	Enabling the Security Module in Unix
	Enabling the Security Module in Windows
	Further Instructions

	Mobile-C API in the C/C++ Binary Space
	MC_AddAgent()
	MC_CallAgentFunc()
	MC_ChInitializeOptions()
	MC_CondReset()
	MC_CondSignal()
	MC_CondWait()
	MC_CopyAgent()
	MC_End()
	MC_FindAgentByID()
	MC_FindAgentByName()
	MC_GetAgentExecEngine()
	MC_GetAgentNumTasks()
	MC_GetAgentReturnData()
	MC_GetAgentStatus()
	MC_GetAgentType()
	MC_GetAgentXMLString()
	MC_Initialize()
	MC_MutexLock()
	MC_MutexUnlock()
	MC_PrintAgentCode()
	MC_ResetSignal()
	MC_RetrieveAgent()
	MC_RetrieveAgentCode()
	MC_SemaphorePost()
	MC_SemaphoreWait()
	MC_SendAgentMigrationMessage()
	MC_SendAgentMigrationMessageFile()
	MC_SetAgentStatus()
	MC_SetDefaultAgentStatus()
	MC_SetThreadOff()
	MC_SetThreadOn()
	MC_Steer()
	MC_SteerControl()
	MC_SyncDelete()
	MC_SyncInit()
	MC_TerminateAgent()
	MC_Wait()
	MC_WaitAgent()
	MC_WaitRetrieveAgent()
	MC_WaitSignal()

	Mobile-C API in the C/C++ Script Space
	mc_AddAgent()
	mc_CallAgentFunc()
	mc_CondReset()
	mc_CondSignal()
	mc_CondWait()
	mc_FindAgentByID()
	mc_FindAgentByName()
	mc_GetAgentStatus()
	mc_GetAgentXMLString()
	mc_MutexLock()
	mc_MutexUnlock()
	mc_PrintAgentCode()
	mc_RetrieveAgent()
	mc_RetrieveAgentCode()
	mc_SemaphorePost()
	mc_SemaphoreWait()
	mc_SendAgentMigrationMessage()
	mc_SendAgentMigrationMessageFile()
	mc_SendSteerCommand()
	mc_SetAgentStatus()
	mc_SetDefaultAgentStatus()
	mc_SyncDelete()
	mc_SyncInit()
	mc_TerminateAgent()

	Index

