Mob:’leC

Mobile-C
— A Multi-Agent Platform for Mobile C/C++ Agents

User’s Guide

Version 1.9

Harry H. Cheng

Mobile-C User’s Guide version 1.9 prepared by:

Yu-Cheng Chou
David Ko

August 30, 2007



Major Contributors (in alphabetical order)

Mobile-C is developed with idea, vision,
by Professor Harry H. Cheng

People who helped to make Mobile-C the real thing

and design

(1f you noticed that some names are missing,
please mail to mobilec@iel.ucdavis.edu)

Name Company
of contribution)

(by the moment

Bertocco,Cristian Univ.

cbertocco@dei.unipd.it

Chen, Bo Univ.

bochen@mtu.edu

Chou, Yucheng Univ.

cycchou@ucdavis.edu

Ko, David, Univ.

dko@ucdavis.edu

Linz, David Univ.

ddlinz@gmail.com

Nestinger, Stephan, Univ.

thestinger@ucdavis.edu

of

of

of

of

of

of

California,

California,

California,

California,

California,

California,

Davis

Davis

Davis

Davis

Davis

Design and implementation
of encryption for security
in Mobile-C

Design and implementation
Mobile-C

Design and implementation
Mobile-C library

Design and implementation
Mobile-C library

Design and implementation
Mobile-C

Webmaster of
http://www.mobilec.org

of

of

of

of



Copyright

/* [

*

* % X

b . R S . . S S S N . . R e I N

*

1%/

Copyright (c) 2007 Integration Engineering Laboratory
University of California, Davis

Permission to use, copy, and distribute this software and its
documentation for any purpose with or without fee is hereby granted,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation.

Permission to modify the software is granted, but not the right to
distribute the complete modified source code. Modifications are to
be distributed as patches to the released version. Permission to
distribute binaries produced by compiling modified sources is granted,
provided you
1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version
in addition to the base release version number,
3. provide your name and address as the primary contact for the
support of your modified version, and
4. retain our contact information in regard to use of the base
software.
Permission to distribute the released version of the source code along
with corresponding source modifications in the form of a patch file is
granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty
to the extent permitted by applicable law.



Abstract

Agent technology is emerging as an important concept for the development of distributed complex systems.
A number of mobile agent systems have been developed in the last decade. However, most of them were
developed to support only Java mobile agents. Furthermore, many of them are standalone platforms. In other
words, they were not designed to be embedded in a user application to support code mobility. In order to
provide distributed applications with code mobility, this article presents a mobile agent library, the Mobile-
C library. The Mobile-C library is supported in various operating systems including Windows, Unix, and
real-time OS. It has a small footprint to meet the stringent memory capacity for a variety of mechatronic and
embedded systems. This mobile agent library allows Mobile-C, a mobile agent platform, to be embedded
in a program to support C/C++ mobile agents. Functions in this library facilitate the development of a
multi-agent system that can easily interface with a variety of hardware devices.



Contents

(I User’s Guide for Mobile-C Library|

(I Introduction

2 Mobile-C Library Installation|
2.1 ~Prerequisites|. . . . . . . . . . . e e e e e e e e

[2.2.1 Install the Mobile-C library| . . . . . . . . .. ... ...
2 Installation on Windows| . . . . . . . . . . . L
[2.3.1  Build the mxml-2.2.2 Library| . . . . . . ... ... ... ... .
[2.3.2  Build the Mobile-C library| . . . . . . . .. .. ... . oo

|3 Sample Application Programs|
3.1 Compilationon Unix| . . . . . . . . . . . . e
3.2 Compilattonon Windows| . . . . . . . .. .. L oo o
[3.3  Overview of Sample Application Programs| . . . . . . ... ... ... ... .. ......
[3.4  Execution of Sample Applications| . . . . . . . . . . ... e

|4 Architecture of the Mobile-C Library|
4.1 Architecture of the Mobile-C Library | . . . . . . . ... .. ... ... .. ... .. ....
4.2 Implementation of the Mobile-C Library| . . . . . . .. . ... ... ... ... ...,

|5 Interface between Binary and Mobile Agent Space|
5.1  Example 2: Invoke a Mobile Agent Space Function from Bmary Spacef. . . . . . .. .. ..

|6  Extend Mobile-C Functionality to Mobile Agent Space|
|6.1  Example 3: Terminate Mobile Agent Execution from Mobile Agent Spacef . . . . . . . . ..
6.2  Example 4: Invoke a Registered Service from Mobile Agent Spacef . . . . . . .. ... ...

{7 Synchronization Support in the Mobile-C library|
[7.1 ~ Example 5: Synchronization Using Mutex in Mobile Agent Space| . . . . . ... ... ...

|A° Mobile-C API in the C/C++ Binary Space |
MC-AddAGent()]. . . . . . o o ot e e e e
[MC_ChInitializeOptions()]. . . . . . . o v v v vt e e e e e e
[MC_CondSignal()] . . . . . . . . . . e

CondWait()] . .« . . o o e e e e
MC dO| . . o o e e e
MC FindAgentByID()| . . . . . . . . . . e

11
11
12

13
13

18
19
20

22
22



MC FindAgentByName()|. . . . . . . . . . . . . 36

[MC_GetAgentExecEngine()] . . . . . . . . . o o i i 37
MC_GetAgentNumTasks()] . . . . . . . . . . o o e 38
[MC GetAgentReturnData()| . . . . . . . . o v v v e e e e 39
MC_GetAgentStatus()] . . . . . v v v e e 41
MC_GetAgentType()| . . . . . o v o e e 42
MC_GetAgentXMLSIIng()] . . . . . . o v v v e e e e e 43
MC_Initialize()] . . . . . . . . o e 44
MCMUtexLock()] . . . . v o o e e e e e e e e 45
MC MutexUnlock()] . . . . . . o o o o e e e 46
MC PrintAgentCode()] . . . . . o o o v i e 47
MCResetSignal()] . . . . . o . o v o e e e 48
[MCRetrieveAgent()] . . . . o v v vt e o e e e e e 49
[MC RetrieveAgentCode()]. . . . . . . . . o v i i 50
[MC_SemaphorePost()] . . . . . . . . . . o e 51
[MC_SemaphoreWait()]. . . . . . . . . . . . e 52
[MC_SendAgentMigraionMessage()] . . . . . v v o v v v i e 53
[MC_SendAgentMigrationMessageFile()] . . . . . . . . . . . . . . 54
[MC SetAgentStatus()] . . . . . . o o o v v 55
[MC_SetDefaultAgentStatus()] . . . . . v . v v v o e e e e e e 56

SetThreadOffQ)] . . . . . . . o o 57
[MC_SetThreadOn()| . . . . . . o o o e e e e e e e e e 58
[MCSyncDelete()] . . . . . . . . o o 59
IMC_Synclnit(). . . . . . . . e 60
MC_Terminate Agent()] . . . . . . . o o o i e e 61
IMC_Wait()]. . . . . . e 62
MC_WaitAgent()] . . . . . . . . . o e 63
[MC_WaitRetrieveAgent()] . . . . . . . o v v v vt e e 64
[MC_WaitSignal()] . . . . . . . . . . 65
Mobile-C API in the C/C++ Script Space | 67
[mc_CondSignal()] . . . . . . . . . e 69
mc_CondWait()] . . . . . . . . e 70
Imc_FindAgentByID()| . . . . . . . . . e 71
Imc_FindAgentByName()| . . . . . . . . . . . e 72
Imc_GetAgentStatus()| . . . . . . . .. e e e e e e 73
Imc_GetAgentXMLString()] . . . . . . . . . . e 74
Imc_MutexLock()] . . . . . . .. e e 75
iImc_MutexUnlock()| . . . . . . . . e 77
mc_PrintAgentCode()] . . . . . . . . .. e e e 78
Imc_RetrieveAgent() . . . . . . .. L e 79
mc_RetrieveAgentCode()] . . . . . . . . . oL 80
[mc_SemaphorePost()] . . . . . ... L 81
Imc_SemaphoreWait()] . . . . . . . . .. 82
[mc_SendAgentMigrationMessage()[. . . . . . . . . . L. 83
Imc_SendAgentMigrationMessageFile()|. . . . . . . . .. ... o L Lo 84
Imc_SetAgentStatus()] . . . . . .. L. e e e e e 85
|mc_SetDefaultAgentStatus()| . . . . . . . . . . . . ... 86

ii



Imc_SyncDelete()] . . . . . . . e

.............................................
Imc_Terminate Agent()] . . . . . . . . . ... e e e e e e e e e

Index]

ii



Part I

User’s Guide for Mobile-C Library



Chapter 1

Introduction

Parallel and distributed computing [[1] [2]] are widely used in scientific and engineering fields, especially
for time-critical or time-consuming tasks. Parallel computing is typically carried out in dedicated multipro-
cessors with a central clock and shared memory. On the other hand, distributed computing is decentralized
parallel computing, using two or more computers communicating over a network to accomplish a common
objective or task. It is similar to computer clustering with the main difference being a wide geographic dis-
persion of the resources. In addition to the main difference, the types of hardware, programming languages,
operating systems and other resources may vary drastically as well in distributed computing.

Although the processing speed of networked computers is typically not as fast as that of a dedicated
parallel computer, networked computers are less expensive and more broadly available. Due to the rapid
improvement in network hardware and software that makes distributed computing faster, more broadly
available, and easier-to-implement than before, there are more and more research investigations nowadays
targeting or exploiting this low-end, decentralized parallel computing. Meanwhile, as the scale of distributed
applications rapidly expands, there is an increasing demand for the code mobility.

Agent technology can significantly enhance the design and analysis of problem domains under the fol-
lowing three conditions [3]: (1) the problem domain is geographically distributed; (2) the subsystems exist
in a dynamic environment; (3) the subsystems need to interact with each other more flexibly. Mobile agents
are software components that can travel between different execution environments [4]. Mobile agents can
be created dynamically during runtime and dispatched to source systems to perform tasks with the most
updated code. Therefore, the mobility of mobile agents provides distributed applications with significant
flexibility and adaptability which are both essential to satisfy the dynamically changing requirements and
conditions in a distributed environment.

Most of the mobile agent systems were developed to support only Java mobile agents. Furthermore,
many of them are standalone platforms. In other words, they were not designed to be embedded in a user
application to support code mobility. Mobile-C [J5] [6] [7] [8] was originally developed as a standalone,
IEEE Foundation for Intelligent Physical Agents (FIPA) compliant mobile agent platform with a primary
intention to fit applications where low-level hardware gets involved, such as networked mechatronic and
embedded systems. Since most of these systems are written in C/C++, Mobile-C uses C/C++ as the mobile
agent language for easy interfacing with control programs and underlying hardware. In addition, Mobile-C
uses an embeddable C/C++ interpreter — Ch, originally developed by Cheng [9] [10] [11]], to support the
execution of C/C++ mobile agent code.

In order to provide distributed applications with code mobility, this user’s guide presents a mobile agent
library, the Mobile-C library. The Mobile-C library is supported in various operating systems including
Windows, Unix, and real-time OS. It has a small footprint to satisfy the small memory requirement for a
variety of mechatronic and embedded systems. This mobile agent library allows Mobile-C to be embedded



in a program to support C/C++ mobile agents. The API functions in this library facilitate the development
of a multi-agent system that can easily interface with a variety of hardware devices.



Chapter 2

Mobile-C Library Installation

This chapter describes the prerequisites to install the Mobile-C library and the installation steps for both
Unix and Windows operating systems.

2.1 Prerequisites

This user’s guide assumes all necessary software packages are installed correctly and function. The software

packages required to successfully install the Mobile-C library include:

(1) Ch version 6.0.0 or greater: It can be obtained from http://www.softintegration.com

(2) Embedded Ch version 6.0.0 or greater: It can be obtained from http://www.softintegration.com

(3) mxml-2.2.2: Itis packaged with the Mobile-C library, but may be obtained from http://www.easysw.com/ mike/mxml/

2.2 Installation on Unix

2.2.1 Install the Mobile-C library

The following commands will install the Mobile-C library in the system directory, which is usually ‘/ust/local/lib’
or ‘/usr/lib’ depending on your system. By default, the Mobile-C library created contains both shared
and static versions, which are ‘libmc.s0.0.0.0” and ‘libmc.a’, respectively. The header file, libmc.h, used

in the C/C++ binary space will be placed in the system directory, which is usually ‘ust/local/include’ or
‘fusr/include’ depending on your system.

cd <MCPACKAGE>/src
./configure

make

make install

Note that these commands will automatically build mxml-2.2.2 and xyssl-0.7, both of which are pack-
aged with Mobile-C, but will not install these libraries. The Mobile-C libraries only need these libraries to
compile, but does not need them installed in order to run.

Also note that the above commands will automatically compile all the included demos automatically
after compiling the Mobile-C library. The demos will run even if the *make install’ step is omitted.

The ‘—prefix’ option can be used to specify the home directory to install the Mobile-C files, as shown in
the following commands.



cd <MCPACKAGE>/src
./configure —--prefix=<MCHOME>
make

make install

<MCHOME>> is the installation directory for the Mobile-C library and header file.
The library files ‘libmc.s0.0.0.0’ and ‘libmc.a” will be installed in <MCHOME>/lib, and the header file
‘libmc.h’ will be placed in <MCHOME >/include.

2.3 Installation on Windows

2.3.1 Build the mxml-2.2.2 Library
If the mxml-2.2.2 library has not been installed on your system, it can be built from the ‘<MCPACKAGE>/src/mxml-
2.2.2’ directory with the following steps in Microsoft Visual Studio .NET 2003.

1. Open the project file loctaed at ‘< MCPACKAGE>/src/mxml-2.2.2/vcnet/mxml.veproj’.
2. Click on ‘Build Solution’ in the ‘Build’ menu.
3. The library ‘mxml.lib’ will be created in the ‘<MCPACKAGE>/src/mxml-2.2.2’ directory.

2.3.2 Build the Mobile-C library
The Mobile-C library can be built with the following steps in Microsoft Visual Studio .NET 2003.
1. Open the project file located at ‘< MCPACKAGE>/src/win32/mc_lib_win32.vcproj’.

2. Click on ‘Build Solution’ in the ‘Build’ menu.
3. The library ‘libmc.lib* will be created in the ‘<MCPACKAGE>/src/win32’ directory.



Chapter 3

Sample Application Programs

This chapter describes how to compile two sample application programs, ‘mc_server.c’ and ‘mc_client.c’,
shown as Program |I| and Program |2} on Unix and Windows operating systems, and illustrates these two
programs as well.

3.1 Compilation on Unix

All the demo programs are compiled automatically in the Unix version.

3.2 Compilation on Windows

The sample program ‘mc_server.c’ located in the directory ‘<MCPACKAGE>/demos/mc_sample_app’ can
be complied to create the executable ‘mc_server.exe’ with the following steps in Microsoft Visual Studio
.NET 2003.

1. Open the project file loctaed at
‘<MCPACKAGE>/demos/mc_sample_app/mc_server_win32/mc_server_win32.vcproj’.
2. Click on ‘Build Solution’ in the ‘Build’ menu.
3. The executable ‘mc_server.exe’ will be created in the
‘<MCPACKAGE >/demos/mc_sample_app’ directory.

Similarly, the following steps can be used to compile the other program ‘mc_client.c’ located in the di-
rectory ‘<MCPACKAGE>/demos/mc_sample_app’ to create the executable ‘mc_client.exe’ in Microsoft
Visual Studio .NET 2003.

1. Open the project file loctaed at
‘<MCPACKAGE>/demos/mc_sample_app/mc_client_win32/mc_client_win32.vcproj’.

2. Click on ‘Build Solution’ in the ‘Build’ menu.

3. The executable ‘mc_client.exe’ will be created in the
‘<MCPACKAGE>/demos/mc_sample_app’ directory.

3.3 Overview of Sample Application Programs

Program [I] starts an agency that is capable of receiving mobile agents and executing mobile agent code.



#include <libmc.h>
#include <stdio.h>
int main ()

{

The header file libme.h is included at the beginning of the program. It defines all the data types, macros and
function prototypes for the Mobile-C library.

MCAgency_t agency;
int local_port = 5130;

The variable agency, of type MCAgency_t, is a handle that contains information of an agency.

agency = MC_Initialize(local_port, NULL);

MC Initialize() takes an integer and the address of an MCAgencyOptions_t varibale as its two parameters.
An MCAgencyOptions_t variable is a structure that contains information about which threads to be acti-
vated and the default agent status specified by a user. Here, a NULL pointer is passed to MC _Initialize() as
the second parameter to start an agency with default settings for active threads and the default agent status.
A local agency will be initialized to listen on port 5130 specified by the variable local_port.
if (MC_Wait (agency) != 0) {
MC_End (agency) ;
return -1;

}

return 0;

The agency waits indefinitely for a mobile agent by the function MC_Wait() on success. Otherwise, the
function MC_End() will be called to terminate the agency.

Program [2| starts an agency that sends a mobile agent to a remote agency.
#include <libmc.h>
int main() {

MCAgency_t agency;
int local_port = 5050;

int server_port = 5130;
char *file_name = "./testl.xml";
char *server_name = "localhost";

agency = MC_Initialize(local_port, NULL);
MC_SendAgentMigrationMessageFile (agency, file_name, server_name, server_port);

/+ Note: We need to sleep here to ensure that the outgoing message has had
* enough time to be handled by the ACC. x/

sleep(2);

printf ("Terminating...\n");

MC_End (agency) ;

return 0;



#include <libmc.h>

int main() {
MCAgency_t agency;
int local_port = 5130;

agency = MC_Initialize(local_port, NULL);

if (MC_Wait (agency) != 0) {
MC_End (agency) ;
return -1;

}

return 0;

Program 1: mc_server.c, located at mobilec/demos/mc_sample_app/mc_server.c.

In Mobile-C, a mobile agent message is an Agent Communication Language (ACL) message in Extensible
Markup Language (XML) format. MC_SendACLMessageFile() takes an MCAgency_t variable, the path
to a mobile agent message file, the name of the host on which a remote agency is running, and the port
number on which a remote agency is listening as its four parameters. Here, MC_SendACLMessageFile()
sends the mobile agent message saved as testl.xml in current directory to the remote agency running on
host iel2.engr.ucdavis.edu and listening on port 5130.

3.4 Execution of Sample Applications

Run the following commands from a text terminal on the server machine, in this case iel2.engr.ucdavis.edu,
to start an agency listening on port 5130.

cd <MCPACKAGE>/demos/mc_sample_app
./mc_server

Next, run the following commands from a text terminal on the client machine, in this case bird1.engr.ucdavis.edu,
to start an agency listening on port 5050 and send the mobile agent message testl.xml, shown as Program
to the remote agency running on host iel2.engr.ucdavis.edu and listening on port 5130.

cd <MCPACKAGE>/demos/mc_sample_app
./mc_client

After the mobile agent message is received and the mobile agent code is executed, the string Hello World!
should be printed to the text terminal on the server machine.



#include <libmc.h>

int main() {
MCAgency_t agency;
int local_port = 5050;

int server_port = 5130;
char xfile_name = "./testl.xml";
char *server_name = "localhost";

/* If server is not running on localhost, replace ’localhost’ with the
x fully qualified hostname of your server. i.e., if the server is running
* on iel2.engr.ucdavis.edu, use */

/+ char xserver_name = "iel2.engr.ucdavis.edu"; =/

agency = MC_Initialize(local_port, NULL);
MC_SendAgentMigrationMessageFile (agency, file_name, server_name, server_port);
/+ Note: We need to sleep here to ensure that the outgoing message has had

* enough time to be handled by the ACC. «/
sleep(2);
printf ("Terminating...\n");

MC_End (agency) ;

return 0;

Program 2: mc_client.c, located at mobilec/demos/mc_sample_app/mc_client.c



<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>birdl.engr.ucdavis.edu:5050</HOME>
<TASK task="1" num="0">
<DATA name="no-return"
complete="0"
server="localhost:5130">
</DATA>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main() {
printf ("Hello World!\n");
return 0;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</GAF_MESSAGE>

Program 3: testl.xml, located at mobilec/demos/mc_sample_app/testl.xml.

10



Chapter 4

Architecture of the Mobile-C Library

The Mobile-C library allows a Mobile-C agency to be embedded in a program to support C/C++ mobile
agents. In addition, the Mobile-C API gives users a full control over a Mobile-C agency embedded in
a program. Therefore, the Mobile-C library not only provides a significant code mobility for distributed
applications, but also facilitates the development of a multi-agent system that can easily interface with
various hardware devices.

4.1 Architecture of the Mobile-C Library

Figure illustrates the architecture of the Mobile-C library. The Mobile-C library allows a Mobile-C
agency to be embedded in a program to support C/C++ mobile agents. A Mobile-C agency refers to a
mobile agent platform within which mobile agents exist and operate. The Mobile-C API gives users a full
control over a Mobile-C agency and its different modules.

As an FIPA compliant mobile agent platform, a Mobile-C agency comprises three FIPA normative mod-
ules, Agent Management System (AMS), Agent Communication Channel (ACC) and Directory Facilitator
(DF). Two additional modules, Agent Execution Engine (AEE) and Agent Security Manager (ASM), are
included in a Mobile-C agency as well. These modules provide different functionalities summarized as
follows.

Agent Management System (AMS)

An AMS controls the creation, registration, execution, migration, persistence, and termination of a mobile
agent. It maintains a directory of Agent Identifiers (AIDs) for registered mobile agents. Each mobile agent

Mobile-C Application Programming Interface

| | | | 7>
| | | |

AMS ACC ASM DF i i

Mobile-C Agency AEE

Figure 4.1: Architecture of the Mobile-C library.

11



Mobile-C Application Programming Interface

f f f f 73

U U U U

AMS ACC ASM DF

Mobile-C Agency AEE

Figure 4.2: Architecture of the Mobile-C library.

must register with an AMS in order to have a valid AID.

Agent Communication Channel (ACC)
An ACC routes messages between local and remote entities. It is responsible for the interactions between
distributed components, such as inter-agent communication and inter-platform agent transport. The interac-
tions can be performed through Agent Communication Language (ACL) message exchange.

Directory Facilitator (DF)
A DF serves yellow page services. Mobile agents wishing to advertise their services should register with a
DF. Visiting mobile agents can search a DF for mobile agents providing the services they desire.

Agent Execution Engine (AEE)
An AEE serves as the execution environment for mobile agent code. An AEE has to be platform independent
in order to support the execution of mobile agents in a heterogeneous environment.

Agent Security Manager (ASM)
An ASM is responsible for maintaining security policies for the host system. Some sample tasks of an
ASM include identifying users, protecting host resources, authenticating and authorizing mobile agents,
and ensuring the security and integrity of mobile agents.

4.2 Implementation of the Mobile-C Library

Figure 4.2] shows the implementation overview of the Mobile-C library. The functionalities of each module
of an agency are implemented as independent threads classified into five categories, that is, the AMS func-
tionality threads, the ACC functionality threads, the DF functionality threads, the ASM functionality threads
and the AEE threads. Each AEE thread is launched by one of the AMS functionality threads. The Mobile-C
library provides API functions to specify which thread needs to be active or inactive when an agency is
initialized. It also provides API functions to access the input and output data structures associated with the
functionality threads. A Mobile-C agency maintains a list of synchronization variables that can be used with
a group of Mobile-C functions to ensure synchronization among mobile agents and threads. The sizes of
the Mobile-C static and shared libraries for Linux are about 340 KB and 290 KB, respectively. The AMS
and ACC functionality threads are used as two examples in this section to demonstrate the implementation
of the Mobile-C library.

The header file libmc.h contains definitions of all the structures and functions of the Mobile-C library.
Table lists the currently implemented functions for the binary space.

12



Chapter 5

Interface between Binary and Mobile Agent
Space

An embeddable C/C++ interpreter Ch was chosen to be the AEE in the Mobile-C library to support C/C++
mobile agents. Therefore, in order to access the variables, functions, and data sets in the mobile agent space
from the binary space, Ch must be first embedded in the binary space. The function MC_GetAgentExecEngine()
in Table [A.3|returns the AEE associated with a mobile agent to the binary space. Using the AEE returned
by MC_GetAgentExecEngine(), all of the Embedded Ch functions [12] can be called in a binary C/C++
program to access the variables, functions, and data sets defined in the mobile agent space. The Embedded
Ch toolkit also allows mobile agent code to invoke C/C++ functions defined in a binary C/C++ program.

The Embedded Ch toolkit reduces the complexity of heterogeneous development environment for both
embedded scripting and applications. With the consistent C/C++ code base, it can significantly reduce the
effort in the software development and maintenance. Moreover, with the Embedded Ch toolkit, C/C++
applications can be extended with all the features of Ch including built-in string type for scripting. The
Embedded Ch toolkit has a small footprint. The pointer and time deterministic nature of the C language
provide a perfect interface with hardware in real-time systems.

5.1 Example 2: Invoke a Mobile Agent Space Function from Binary Space

This example illustrates how to call a function defined in mobile agent code by using the Mobile-C library
and Embedded Ch toolkit. The mobile agent in this example is a persistent agent, which is not removed
upon termination of its execution.

The client program shown in Program [] starts a Mobile-C agency listening on port 5050 by the function
MC _Initialize(), and sends a mobile agent to the remote agency running on host iel2.engr.ucdavis.edu at port
5130 through the function MC_SendACLMessageFile(). The filename including the full path of the mobile
agent is specified from the standard input.

The mobile agent sent to the remote agency is mobileagent_ex2.xml shown in Program [5] The name,
owner, source machine of the mobile agent are mobileagentl, IEL, and birdl.engr.ucdavis.edu:5050, re-
spectively. The mobile agent is persistent since the flag persistent is set to 1 in Program [5| This flag can
be set to O or removed by a user for a non-persistent mobile agent. The embedded mobile agent code is a
simple but complete C program which defines the function &ello() to be called in the server program.

As shown in Program [6] the server program starts a Mobile-C agency listening on port 5050 by the
function MC _Initialize(), and waits for a mobile agent. The mobile agent named mobileagentl is found by
the function MC_FindAgentByName(), and the AEE associated with the mobile agent is obtained by the
function MC_AgentExecEngine(). The variable returned by MC_AgentExecEngine() is a Ch interpreter of

13



mc_sample_app.cC

This sample program uses the Mobile C library to build
a simple command-line driven client/server app.

12/15/2006
*/

% ok X X X %

#ifndef _WIN32
#include <libmc.h>
felse

#include <libmc.h>
#endif

#include <stdio.h>
#ifndef _WIN32
#include <unistd.h>
fendif

int main(int argc, char xargv[])
{
/* Init the agency x/
MCAgency_t agency;
agency = MC_Initialize(
5051,
NULL) ;

MC_SendAgentMigrationMessageFile (

agency,
"testl.xml",
"localhost",
5050 );
#ifndef _WIN32
sleep(1l);
#else
Sleep (1000);
fendif
MC_SendAgentMigrationMessageFile (
agency,
"test2.xml",
"localhost",
5050 );

return 0;

Program 4: client.c. This file may be found at mobilec/demos/persistent_example/.

data type Chlinterp_t. This variable is the first parameter for all of the Embedded Ch functions. The function
hello() defined in the mobile agent code is invoked by the Embedded Ch function Ch_CallFuncByName().

There are several different methods to call functions in mobile agent space from the binary space using
the Embedded Ch API Here we describe the function Ch_CallFuncByName() used in Program [6] With
Ch_CallFuncByName(), a function defined in the mobile agent space can be called by its name. The proto-
type of Ch_CallFuncByName() is shown as follows.

int Ch_CallFuncByName(Chlnterp_t interp, char *name, void *retval, ...);

The first argument is an instance of the Ch interpreter. The second argument is a string containing the

14



<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA persistent="1" number_of_elements="0" name="no-return" complete="0" server="localhost:50
</DATA>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
struct arg_struct{
int a;
int b;
bi
int main ()
{
printf ("The sample persistent agent has now arrived.\n");
return 0;

int hello(struct arg_struct* arqg)

printf ("Hello!!!\n");

printf ("This text is being generated from within the 'hello ()’ function!\n");
printf ("I received arguments of value %d %d.\n", arg->a, arg->b);

return 4;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</GAF_MESSAGE>

Program 5: test1.xml. This file may be found at mobilec/demos/persistent_example/.

name of the function to be called. The function name is associated with a function defined in mobile agent
code. The third argument is a pointer containing the address of the return value of the called function. If
the called function takes any arguments, the arguments should be listed after the third argument, retval.
Ch_CallFuncByName() returns zero on successful execution or non-zero on failure.

Figure [5.1] shows the output when the binary file server compiled from Program [6] was executed. The
string Hello World! generated from the function hello() was printed to the screen when the Enter key was
pressed after the mobile agent had arrived.

15



mc_sample_app.cC

*
*
* This sample program uses the Mobile C library to build
*+ a simple command-line driven client/server app.

*

x 12/15/2006

*/

#ifndef _WIN32

#include <libmc.h>

#else

#include <libmc.h>

#endif

#include <embedch.h>

#include <stdio.h>

#ifndef _WIN32

#include <unistd.h>

fendif

*

int main(int argc, char xargv[])
{
MCAgent_t agent;
ChInterp_t interp;
int retval;
int argl2];
/* Init the agency */
MCAgency_t agency;
agency = MC_Initialize(
5050,
NULL) ;

printf ("Please press ’'enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName (agency, "mobagentl");

if (agent == NULL) {
printf ("Could not find agent!\n");
exit (0);

}
/+xinterp = MC_GetAgentExecEngine (agent);
Ch_CallFuncByName (interp, "hello", &retval); =*/
arg[0] = 50;
arg[l] = 51;
MC_CallAgentFunc (
agent,
"hello",
&retval,
arqg);
printf ("Value of %d was returned.\n", retval);
#ifndef _WIN32
sleep(2);
felse
Sleep (2000);
#endif
return 0;

Program 6: host.c. This file may be found at mobilec/demos/persistent_example/.

16



$ ./server

Welcome to Mobile-C version 1.8.3 —-- University of California, Davis,
Please press ’'enter’ once the persistent agent has arrived.

The persistent agent has now arrived.

Hello World!
The above text is generated from the function hello().

Figure 5.1: Output from the binary server program.

17

2007



C/C++ Script Space C/C++ Binary Space

(Mobile Agent Space)
: Mobile-C
Mobile Agent Code Library
-- Ch script

Mobile-C Function Call Target Function 1

mc_function( ) <

7 MC_function() «—

( Interface Function ]

C MC_function_chdl( )

~_

Figure 6.1: Interface of mobile agent code with the Mobile-C library.

Chapter 6

Extend Mobile-C Functionality to Mobile
Agent Space

In order to allow mobile agent code to call user defined routines and access data sets defined in the binary
space, as well as control other mobile agents defined in the mobile agent space through the Mobile-C API
functions, the Mobile-C functionality has to be extended into the mobile agent space. We integrated Ch with
the Mobile-C library to provide access to some Mobile-C functionalities.

Figure [6.1] shows how mobile agent code interfaces with the Mobile-C library. When the function
mc_function() is called in mobile agent code, Ch searches the corresponding interface function MC_function_chdl()
in the Mobile-C library, and passes arguments to it by calling the function. Subsequently, the interface func-
tion MC_function_chdl() invokes the target function MC_function(), and passes the return value back to the
mobile agent space [12].

18



<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5050">
</DATA>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
#include <unistd.h>
int main ()
{
printf ("The sample persistent agent has now arrived.\n");
while (1) {
printf ("Hello.\n");
/+ Sleep for 1 second x/
usleep (1000000) ;
}

return 0;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</GAF_MESSAGE>

Program 7: test2.xml. This is the agent to be terminated. The code may be found in the mo-
bilec/demos/persistent_example/ directory.

The prototypes of Mobile-C functions used in the mobile agent space are declared in mob_agent.c
through an Embedded Ch function, Ch_DeclareFunc(). The data type, MCAgent_t, used as a parameter
or return value by certain Mobile-C functions for the mobile agent space is also defined in mob_agent.c by
two Embedded Ch functions, Ch_DeclareVar() and Ch_DeclareTypedef() [12l]. Table lists the currently
implemented functions for the mobile agent space. Two examples are used to demonstrate the applications
and features of the Mobile-C functionality in the mobile agent space.

6.1 Example 3: Terminate Mobile Agent Execution from Mobile Agent Space

This example demonstrates how to send a mobile agent to terminate the execution of another currently
running mobile agent. These two mobile agents belong to independent mobile agent spaces.

The server and client programs used in this example are the same as Programs [I] and 4] respectively.
The first mobile agent sent to the remote agency is mobileagentl _ex3.xml shown in Program [/| The ex-
ecution of the mobile agent code will repeatedly print a string Hello World! to the screen every sec-

19



<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost :5050</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5050">
</DATA>
<AGENT_CODE>
<! [CDATA[
#pragma package <chmobilec>
printf ("At the very beginning of code.");
#include <stdio.h>
int main ()
{
MCAgent_t tmp;
printf ("The sample persistent agent has now arrived.\n");
tmp = mc_FindAgentByName ("mobagentl");
printf ("Agent mobagentl is at address %x\n", tmp);
if (tmp == NULL) {
printf ("Agent not found. Terminating...\n");
return 0;
}
mc_TerminateAgent (tmp) ;
return 0;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</GAF_MESSAGE>

Program 8: test3.xml. This is the agent which terminates the execution of the agent in Program|[7} The code
may be found in the mobilec/demos/persistent_example/ directory.

ond. The second mobile agent sent to the remote agency is mobileagent2_ex3.xml shown in Program
Bl The function mc_FindAgentByName() returns a variable of type MCAgent_t as a handle to a mobile
agent. The mobile agent code embedded in mobileagent2_ex3.xml finds a mobile agent named mobileagent]
by the function mc_FindAgentByName() and terminates the execution of mobileagent! by the function
mc_TerminateAgent().

6.2 Example 4: Invoke a Registered Service from Mobile Agent Space
This example demonstrates how to send a mobile agent to invoke a service provided by a persistent mobile

agent registered with the DF. These two mobile agents belong to independent mobile agent spaces.
The server and client programs used in this example are the same as Programs |1| and 4] respectively.

20



Program 9: mobileagent]_ex4.xml.

Program 10: mobileagent2_ex4.xml.

The first mobile agent sent to the remote agency is mobileagentl _ex4.xml shown in Program [9] The
execution of the mobile agent code will register two services with the remote DF through the function
mc_RegisterService(). The two services are addition and subtraction which provide addition and subtrac-
tion of two integers, respectively. These services also refer to the functions defined in the mobile agent code.
The function mc_RegisterService() takes three parameters. An MCAgent_t type variable is the first parame-
ter. A system variable of type MCAgent_t, mc_current_agent, is used as the first parameter when services for
the current mobile agent are registered, as illustrated in Program[9] The system variable mc_current_agent is
declared in mob_agent.c of the Mobile-C source code using the function Ch_DeclareVar() to hold the current
mobile agent. An array of pointer to character and an integer are the second and third parameters, respec-
tively. The array holds the name of the services whereas the integer denotes the number of the services to
be registered.

The second mobile agent sent to the remote agency is mobileagent2_ex4.xml shown in Program[I0] The
function mc_SearchForService() takes five parameters. The first parameter is the name of the service to
be found. The second parameter is the address of an array of ponter to character that holds the names of
all the mobile agents with the desired service. Likewise, the third parameter is the address of an array of
pointer to charater that holds the desired service name associated with all the found mobile agents. The
fourth parameter is the address of a one-dimensional integer array that holds the IDs of all the mobile
agents with the desired service. The last parameter is the address of an integer denoting the number of
mobile agents that have been found. In this example, once the search for addition service is done, the first
mobile agent with this service will be returned by the function mc_FindAgentByID with a parameter as the
first element of array agentIDs. In this example, the first found mobile agent is mobileagentl_ex4.xml. The
function addition() defined in mobileagentl _ex4.xml will be called through the function mc_CallAgentFunc()
to perform addition of two integers. Since mc_CallAgentFunc() can only pass one argument to the invoked
function, the address of a data structure with two integer members is passed to addition() in this example.
The return value of addition() is assigned to the variable retval. The string Result of 49 + 51 is 100. will be
printed to the screen at the end.

21



Chapter 7

Synchronization Support in the Mobile-C
library

In a Mobile-C agency, mobile agents are executed by independent AEEs. A user might also need to design
a multi-threaded application where a Mobile-C agency itself is one of the many threads that handle differ-
ent tasks. The Mobile-C library provides support for synchronization among mobile agents and threads.
The synchronization API functions are used to protect shared resources as well as provide a method of
deterministically timing the execution of mobile agents and threads.

The internal implementation consists of a linked list of Portable Operating System Interface for UNIX
(POSIX) compliant synchronization variables, namely, mutexes, condition variables, and semaphores. Each
node in the linked list is a synchronization variable which is assigned or given a unique identification number.
The API functions can be called from the binary or mobile agent space to initialize the synchronization
variables and access them by their unique identification numbers in the linked list. The application of the
Mobile-C synchronization mechanism is illustrated by the example below.

7.1 Example 5: Synchronization Using Mutex in Mobile Agent Space

The server program used in this example is the same as Program [I] The client program shown in Pro-
gram |1 1| starts a Mobile-C agency listening on port 5050 and subsequently sends two mobile agents, mo-
bileagentl _ex5.xml and mobileagent2_ex5.xml to the remote agency running on host iel2.engr.ucdavis.edu
at port 5/30. The mobile agents are shown in Programs [I2]and [13]

As shown in Program[12] mobileagent] initializes a mutex with an ID 55 using the function mc_SyncInit().
It uses the function mc_MutexLock() to lock the mutex. Once the mutex has been locked, the execution waits
for 15 seconds. Afterwards, the mutex is unlocked by the function mc_MutexUnlock(). After waiting for 2
seconds, mobileagentl tries to delete the mutex while the mutex has been locked by mobileagent2 shown in
Program Therefore, mobileagent] waits for the mutex to be unlocked by mobileagent2. Afterwards, it
deletes the mutex by the function mc_SyncDelete().

As shown in Program|[13] mobileagent2 starts with trying to lock a mutex with an ID 55 while the mutex
has been locked by mobileagentl shown in Program[I2] Therefore, mobileagent2 waits for the mutex to be
unlocked by mobileagentl. Afterwards, it locks the mutex, waits for 15 seconds, and unlocks the mutex.

22



#include <stdio.h>
#include <libmc.h>
#define WAIT_TIME 2
int main(int argc, char xargv[])
{
MCAgency_t agency;
agency = MC_Initialize (5050, NULL);

printf ("MobileC Started\n");
printf ("Sending sleep agent...\n");
MC_SendAgentMigrationMessageFile (agency,
"sleep.xml",
"localhost",
5051) ;
printf ("Sleeping for %d seconds.\n", WAIT_TIME);
sleep (WAIT_TIME) ;
printf ("Sending wake-up agent...\n");
MC_SendAgentMigrationMessageFile (agency,
"wake.xml",
"localhost™",
5051);
sleep(2);
MC_End (agency) ;
return 0;

Program 11: mc_client.c. This file may be found in mobilec/demos/agent_mutex_example/.

23



<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
int mutex_id;
printf ("Sleep agent has arrived.\n");
mutex_id = mc_SyncInit (55);

if (mutex_id != 55) {
printf ("Possible error. Aborting...\n");
exit (1);

}

printf ("This is agent 1.\n");

printf ("Agent 1: I am locking the mutex now.\n");

mc_MutexLock (mutex_id) ;

printf ("Agent 1: Mutex locked. Perform protected operations here\n");
printf ("Agent 1: Waiting for 5 seconds...\n");

sleep(5);

printf ("Agent 1: Unlocking mutex now...\n");

mc_MutexUnlock (mutex_id) ;

return 0;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</GAF_MESSAGE>

Program 12: sleep.xml. This file is located in mobilec/demos/agent_mutex_example/

24



<?xml version="1.0"7?>

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>

<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>wake_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">
<DATA dim="0"
</DATA>
<AGENT_CODE>
<! [CDATA[

name="no-return"

#include <stdio.h>
int main ()

{

int mutex_id;
mutex_id = 55;
printf ("Agent 2:
printf ("Agent 2:
mc_MutexLock (mutex_id) ;

printf ("Agent 2: Mutex locked.\n");
printf ("Agent 2:
mc_MutexUnlock (mutex_id) ;

printf ("Agent 2: Mutex Unlocked\n");
mc_SyncDelete (mutex_id);

Has arrived");

return 0;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>

</GAF_MESSAGE>

complete="0"

Attempting to lock the mutex..

server="localhost:5051">

-\n");

Perform protected operations here.\n");

Program 13: wake.xml. This file is located in mobilec/demos/agent_mutex_example/

25



Bibliography

[1] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and
Analysis of Algorithms. Reading, MA: Addison-Wesley, 1994.

[2] U. Manber, Introduction to Algorithins - A Creative Approach. Reading, MA: Addison-Wesley, 1989.

[3] J. L. Adler and V. J. Blue, “A Cooperative Multi-Agent Transportation Management and Route Guid-
ance System,” Research Part C - Emerging Technologies, Vol. 10, No. 5-6, pp. 433454, 2002.

[4] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobility,” IEEE Transactions on Soft-
ware Engineering, Vol. 24, No. 5, pp. 342-361, 1998.

[5] B. Chen, “Runtime Support for Code Mobility in Distributed Systems.” Department of Mechanical
and Aeronautical Engineering, University of California, Davis, Ph.D. dissertation, 2005.

[6] B. Chen and H. H. Cheng, “A Run-Time Support Environment for Mobile Agents,” in Proc. of
ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, No.
DETC2005-85389, Long Beach, California, 2005.

[7] B. Chen, H. H. Cheng, and J. Palen, “Mobile-C: a Mobile Agent Platform for Mobile C/C++ Agents,”
Software-Practice & Experience, Vol. 36, No. 15, pp. 1711-1733, December 2006.

[8] Mobile-C: A Multi-agent Platform for Mobile C/C++ Code, http://iel.ucdavis.edu/projects/mobilec/.

[9] H. H. Cheng, “Scientific Computing in the Ch Programming Language,” Scientific Programming,
Vol. 2, No. 3, pp. 49-75, Fall 1993.

[10] ——, “Ch: A C/C++ Interpreter for Script Computing,” C/C++ User’s Journal, Vol. 24, No. 1, pp.
6-12, Jan. 2006.

[11] Ch — an Embeddable C/C++ Interpreter, http://www.softintegration.com.

[12] Embedded Ch, SoftIntegration, Inc., http://www.softintegration.com/products/sdk/embedded_ch/.

26



Appendix A

Mobile-C API in the C/C++ Binary Space

The header file libmc.h defines all the data types, macros and function prototypes for the Mobile-C library.
The header file is used in the C/C++ binary space.

Table A.1: Data types defined in libmc.h.

Data Type Description

MCAgency_t A handle containing information of an agency.

MCAgent_t A handle containing information of a mobile agent.
MCAgencyOptions_t A structure containing information about which thread(s) to be activated

and the default agent status specified by a user.

27



Table A.2: Macros defined in libme.h.

Macro

Description

MC_THREAD_AI
MC_THREAD_AM
MC_THREAD_CL
MC_THREAD_MR
MC_THREAD_MS
MC_THREAD_CP
MC_THREAD_ALL
RECV_CONNECTION
RECV_MESSAGE
RECV_AGENT
EXEC_AGENT
ALL_SIGNALS
REMOTE_AGENT
LOCAL_AGENT
RETURN_AGENT
WAIT_CH
WAIT_MESSGSEND

AGENT_ACTIVE
AGENT _NEUTRAL
AGENT_SUSPENDED
WAIT_FINISHED

Identifier for agent initalizing thread.

Identifier for agent managing thread.

Identifier for connection listening thread.

Identifier for message receiving thread.

Identifier for message sending thread.

Identifier for command prompt thread.

Identifier for all threads.

Signal activated after an agency accepts a connection.

Signal activated after an agency receives an ACL message.

Signal activated after an agency receives a mobile agent.

Signal activated after a mobile agent is executed.

Signal activated after any of the above four events occurs.

Identifier for a remote mobile agent.

Identifier for a local mobile agent.

Identifier for a return mobile agent.

Value indicating a mobile agent is waiting to be executed.

Value indicating a mobile agent is waiting to be exported to another
agency.

Value indicating a mobile agent is being executed.

Value indicating a mobile agent is waiting for an unspecified reason.
Value indicating a mobile agent is being suspended.

Value indicating a mobile agent has been executed and is waiting to be
removed.

28



Table A.3: Functions in the C/C++ binary space.

Function

Description

MC_AddAgent()
MC_ChlInitializeOptions()

MC_CondSignal()
MC_CondWait()

MC_End()

MC _FindAgentByID()

MC _FindAgentByName()
MC_GetAgentExecEngine()
MC_GetAgentNumTasks()
MC_GetAgentReturnData()
MC_GetAgentStatus()
MC_GetAgentType()
MC_GetAgentXMLString()
MC _Initialize()
MC_MutexLock()

MC_MutexUnlock()

MC _PrintAgentCode()
MC _ResetSignal()

MC _RetrieveAgent()

MC _RetrieveAgentCode()
MC_SemaphorePost()
MC _SemaphoreWait()

Add a mobile agent into an agency.

Set the initialization options for a Ch to be used as one AEE in an
agency.

Signal another agent that is waiting on a condition variable.

Cause the calling agent or thread to wait on a Mobile-C condition vari-
able with the ID specified by the argument.

Terminate a Mobile-C agency.

Find a mobile agent by its ID number in an agency.

Find a mobile agent by its name in an agency.

Get the AEE associated with a mobile agent in an agency.

Get the number of tasks a mobile agent has.

Get the return data of a mobile agent.

Get the status of a mobile agent in an agency.

Get the type of a mobile agent.

Retrieve a mobile agent message in XML format as a character string.
Start a Mobile-C agency and return a handle of the launched agency.
Lock a previously initialized Mobile-C synchronization variable as a
mutex.

Unlock a locked Mobile-C synchronization variable.

Print a mobile agent code for inspection.

Reset the Mobile-C signalling system.

Retrieve the first neutral mobile agent from a mobile agent list.
Retrieve a mobile agent code in the form of a character string.

Unlock one resource from a Mobile-C semaphore.

Allocate one resource from a Mobile-C synchronization semaphore
variable.

MC_SendAgentMigrationMessag8éhd an ACL mobile agent message to a remote agency.
MC _SendAgentMigrationMessag8#iile@n ACL mobile agent message saved as a file to a remote agency.

MC_SetAgentStatus()

MC _SetDefaultAgentStatus()

MC_SetThreadOff()
MC_SetThreadOn()
MC_SyncDelete()
MC_Synclnit()

MC _TerminateAgent()
MC_Wait()
MC_WaitAgent()
MC_WaitRetrieveAgent()

Set the status of a mobile agent in an agency.

Assign a user defined default status to all incoming mobile agents.
Deactivate a thread in an agency.

Activate a thread in an agency.

Delete a previously initialized synchronization variable.

Initialize a new synchronization variable.

Terminate the execution of a mobile agent in an agency.

Cause the calling thread to wait indefinitely on an agency.

Cause the calling thread to wait until a mobile agent is received.
Block the calling thread until a mobile agent arrives, and return the mo-
bile agent instead of executing it.

29



MC_AddAgent()

Synopsis
#include <libme.h>
int MC_AddAgent(MCAgency_t agency, MCAgent_t agent);

Purpose
Add a mobile agent into an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters

agency An initialized agency handle to add an agent to.
agent  An initialized mobile agent.

Description
This function adds a mobile agent to an already running agency.

Example

See Also

30



MC_ChlnitializeOptions()

Synopsis
#include <libmc.h>
int MC_ChlnitializeOptions(MCAgent_t agent, ChOptions_t options);

Purpose
Set the initialization options for a Ch to be used as one AEE in an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agent A mobile agent associated with the Ch to be set up.
options Options for setting a Ch to be used as one AEE in an agency. ChOptions_t is defined as a
structure as the following:

typedef struct ChOptions{
int shelltype; // shell type
int chrc; // TRUE to execute startup file
char *chrcname; // user’s startup file
char xchhome; // Embedded Ch home directory
char *chmtdir; // dir for lib chmtl.dl

} ChOptions_t;

Description

This function sets up a Ch for executing the mobile agent code. The Ch shell type and the startup file to be
used are indicated in the argument options. If this function is not called, the default value for ChOptions
will be used to start up a Ch for running the mobile agent code.

Example

See Also

31



MC_CondSignal()

Synopsis
#include <libmc.h>
int MC_CondSignal(int ¢d);

Purpose
Signal another mobile agent which is waiting on a condition variable.

Return Value
This function returns O if the condition variable is successfully found and signalled. It returns non-zero if
the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description

This function is used to signal another mobile agent or thread that is waiting on a Mobile-C condition vari-
able. The function that calls MC_CondSignal must know beforehand the id of the condition variable which
a mobile agent might be waiting on.

Example

See Also
MC_CondDelete(), MC_CondInit(), MC_CondSignal().

32



MC_CondWait()

Synopsis
#include <libmc.h>
int MC_CondWait(int id);

Purpose
Cause the calling mobile agent or thread to wait on a Mobile-C condition variable with the id specified by
the argument.

Return Value
This function returns O upon successful wakeup or non-zero if the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description

This function blocks until the condition variable on which it is waiting is signalled. If an invalid id is
specified, the function returns 1 and does not block. The function is designed to enable synchronization
possibilities between threads and mobile agents without using poll-waiting loops.

Example

See Also
MC_CondDelete(), MC_CondInit(), MC_CondSignal().

33



MC _End()

Synopsis
#include <libme.h>
int MC_End(MCAgency_t agency);

Purpose
Terminate a Mobile-C agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency A handle to a running agency.

Description
This function stops all the running threads in an agency and deallocates all the memories regarding an
agency.

Example

See Also

34



MC FindAgentByID()

Synopsis
#include <libme.h>
MCAgent_t MC _FindAgentByID(MCAgency_t agency, int id);

Purpose
Find a mobile agent by its ID number in a given agency.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
agency An agency handle.
id An integer representing a mobile agent’s ID number.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s ID number.

Example

See Also

35



MC_FindAgentByName()

Synopsis
#include <libmc.h>
MCAgent_t MC_FindAgentByName(MCAgency_t agency, const char *name);

Purpose
Find a mobile agent by its name in an agency.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
agency An agency handle.
name A character string containing the mobile agent’s name.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s given name.

Example

See Also

36



MC_GetAgentExecEngine()

Synopsis
#include <libmc.h>
Chlinterp_t MC_GetAgentExecEngine(MCAgent_t agent);

Purpose
Get the AEE associated with a mobile agent in an agency.

Return Value
The functions returns a Ch interpreter on success and NULL on failure.

Parameters
agent A valid mobile agent.

Description

This function is used to retrieve a Ch interpreter from a mobile agent. The mobile agent must be a valid
mobile agent that has not been terminated at the time of this function call. The Ch interpreter may be used
by the Embedded Ch API to execute functions, retrieve data, and other various tasks.

Example

See Also

37



MC_GetAgentNumTasks()

Synopsis
#include <libmc.h>
int MC_GetAgentNumTasks(MCAgent_t agent);

Purpose
Return the total number of tasks a mobile agent has.

Return Value
This function returns a non negative integer on success and a negative integer on failure.

Parameters
agent A MobileC agent.

Description
This function returns the total number of tasks that an agent has. It counts all tasks: those that have been
completed, those that are in progress, and those that have not yet started.

Example

int ij;
MCAgent_t agent;

/* More code here =/

i = MC_GetAgentNumTasks (agent) ;
printf ("The agent has %d tasks.\n", 1i);

The previous piece of code retrieves the nuber of tasks that an agent has and prints it to standard output.

See Also

38



MC_GetAgentReturnData()

Synopsis
#include <libmc.h>
int MC_GetAgentReturnData(MCAgent_t agent, int task_num, void** data, int* dim, int** extent);

Purpose
Retrieve the data from a return mobile agent.

Return Value
The function returns O on success and non-zero otherwise.

Parameters

agent A returning agent.

task_num The task for which the return data is to be retrieved.

data A pointer to hold an array of data.

dim An integer to hold the dimension of the array.

extent A pointer to hold an array of extents for each dimension of the data array.
Description

This function is used to retrieve the return data of a mobile agent. Mobile agents may return single data
values as well as multidimensional arrays of int, float, or double type. The first two arguments, agent and
task_num, are input arguments which specify which mobile agent and task for which to retrieve data. The
next three arguments are unallocated pointers which are modified by the function. The mobile agent’s return
data are stored as a single list of values in data. The dimension of the array is stored into dim, and the size
of each dimension is stored into extent.

Example

MCAgent_t agent;
MCAgency_t agency;
double =*data;

int dim;

int *extent;

int i;

int elem;

/* Agency initialization code here */

agent = MC_FindAgentByName (agency, "ReturnAgent");
MC_GetAgentReturnData (agent, 0, &data, &dim, &extent);
elem = 1;
for (1i=0; i<dim; 1i++) {
printf ("dim %d has %d size.\n", i, extent[i]);
elem *= extent[i];
}

printf ("There are %d total elements in the multidimensional array.\n", elem);

39



The above code prints the dimension and extent of each dimension of the return data held by the agent. It
only prints the data of the first task, as indicated by the second argument of function MC_GetAgentReturnData(),
which is 0 in this example.

See Also

40



MC_GetAgentStatus()

Synopsis
#include <libmc.h>
int MC_GetAgentStatus(MCAgent_t agent);

Purpose
Get the status of a mobile agent in an agency.

Return Value
This function returns an enumerated value representing the current status of a mobile agent. The values are

0, WAITCH: Mobile agent is currently waiting to be executed.

1, WAIT_MESSGSEND : Mobile agent is currently waiting to be exported to another agency.

2, AGENT_ACTIVE : Mobile agent is currently being executed.

3, AGENT_NEUTRAL : Mobile agent is waiting for an unspecified reason.

4, AGENT_SUSPENDED :  Mobile agent is currently being suspended.

5, WAIT_FINISHED : Mobile agent has finished execution and is waiting for removal.
Parameters

agent The mobile agent from which to retrieve status information.

Description
This function gets a mobile agent’s status. The status is used to determine the mobile agent’s current state
of execution.

Example

See Also

41



MC_GetAgentType()

Synopsis
#include <libmc.h>
enum MC_AgentType_e MC_GetAgentType(MCAgent_t agent);

Purpose
This function blocks until one of a specified number of signals is signalled.

Return Value
This function returns an enumerated value of type MC_AgentType_e.

Parameters
agency A handle associated with a running agency.
stgnals A combination of signals specified by the enum MC_Signal e.

Description

This function is used to determine the type of agent that input argument ’agent’ is. It is useful for use in
determining if the agent is an active agent of type " MOBILE_AGENT”, or a return agent containing return
data of type 'RETURN_AGENT".

Example

MCAgent_t agent;
enum MC_AgentType_e type;

/+* Code here which assign an agent to variable ’'agent’ =/
type = MC_GetAgentType (agent) ;
switch (type) {
case MOBILE_AGENT:
printf ("Received a mobile agent.\n");
break;
case RETURN_AGENT:
printf ("Received a return agent.\n");
break;
default:
printf ("Received an agent of other type.\n");
break;

}

The above code determines whether a mobile agent is a return agent or a normal agent to be executed, and
prints the result to the standard output.

See Also

42



MC_GetAgentXMLString()

Synopsis
#include <libmc.h>
char *MC_GetAgentXMLString(MCAgent_t agent);

Purpose
Retrieve a mobile agent message in XML format as a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the XML formatted message.

Description
This function retrieves a mobile agent message in XML format as a character string. The return pointer is
allocated by *malloc()’ and must be freed by the user.

Example

See Also

43



MC _Initialize()

Synopsis
#include <libmc.h>
MCAgency_t MC _Initialize(int port, MCAgencyOptions_t xoptions);

Purpose
Start a Mobile-C agency and return a handle of the launched agency.

Return Value
The function returns an MCAgency _t on success and NULL on failure.

Parameters
port The port number to listen on for incoming mobile agents.
options The address of a structure of type MCAgencyOptions_t for specifying which thread(s) to
be activated in an agency and setting the default agent status for incoming mobile agents.
MCAgencyOptions_t is defined as a structure as the following:

typedef struct MCAgencyOptions_s{
int threads;
int default_agent_status;
int modified;

} MCAgencyOptions_t;

Description

MC Initialize() starts a Mobile-C agency and returns a handle of type MCAgency_t containing the infor-
mation about the current agency. The first one specifies the port number on which an agency will listen.
The second one can specify which thread(s) to be activated in an agency and the default agent status for
incoming mobile agents.

Example

See Also

44



MC _MutexLock()

Synopsis
#include <libmc.h>
int MC_MutexLock(MCAgency_t agency, int id);

Purpose
This function locks a previously initialized Mobile-C synchronization variable as a mutex. If the mutex is
already locked, the function blocks until it is unlocked before locking the mutex and continuing.

Return Value
This function returns 0 on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description
This function locks the mutex part of a Mobile-C synchronization variable. While this is primarily used to
guard a shared resource, the behaviour is similar to the standard POSIX mutex locking. Note that although a
MobileC synchronization variable may assume the role of a mutex, condition variable, or semaphore, once
a Mobile-C synchronization variable is used as a mutex, it should not be used as anything else for the rest of
its life cycle.

Example

See Also
MC_MutexUnlock(), MC_Synclnit(), MC_SyncDelete().

45



MC_MutexUnlock()

Synopsis
#include <libmc.h>
int MC_MutexUnlock(MCAgency _t agency, int id);

Purpose
This function unlocks a locked Mobile-C synchronization variable.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description

This function unlocks a Mobile-C synchronization variable that was previously locked as a mutex. If the
mutex is not locked while calling this function, undefined behaviour results. Note that although a Mobile-C
may act as a mutex, condition variable, or semaphore, once it has been locked and/or unlocked as a mutex,
it should only be used as a mutex for the remainder of it’s life cycle or unexpected behaviour may result.

Example

See the example for MC_MutexLock().

See Also

MC_MutexLock(), MC_Synclnit(), MC_SyncDelete().

46



MC_PrintAgentCode()

Synopsis
#include <libme.h>
int MC _PrintAgentCode(MCAgent_t agent);

Purpose
Print a mobile agent code for inspection.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agent The mobile agent from which to print the code.

Description
This function prints the mobile agent code to the standard output.

Example

See Also

47



MC _ResetSignal()

Synopsis
#include <libmc.h>
int MC _ResetSignal MCAgency_t agency);

Purpose
This function is used to reset the Mobile-C signalling system. It is intended to be used after returning from
a call to function MC_WaitSignal().

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
agency A handle to a running agency.

Description

This function is used to reset the Mobile-C signalling system. System signals are triggered by certain events
in the Mobile-C library. This includes events such as the arrival of a new message or mobile agent, and
the departure of a mobile agent, etc. If function MC_WaitSignal() is used to listen for one of these events,
function MC_ResetSignal() must be called in order to allow Mobile-C to resume with it’s operations.

Example

See Also
MC_WaitSignal()

48



MC _RetrieveAgent()

Synopsis
#include <libme.h>
MCAgent_t MC_RetrieveAgent(MCAgency_t agency);

Purpose
Retrieve the first neutral mobile agent from a mobile agent list.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
agency An agency handle.

Description
This function retrieves the first agent with status AGENT_NEUTRAL from a mobile agent list. If there are
no mobile agents with this attribute, the return value is NULL.

Example

See Also

49



MC _RetrieveAgentCode()

Synopsis
#include <libme.h>
char *MC _RetrieveAgentCode(MCAgent_t agent);

Purpose
Retrieve a mobile agent code in the form of a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the code.

Description
This function retrieves a mobile agent code. The return pointer is allocated by *'malloc()’ and must be freed
by the user.

Example

See Also

50



MC_SemaphorePost()

Synopsis
#include <libmc.h>
int MC _SemaphorePost(MCAgency _t agency, int id);

Purpose
This function unlocks one resource from a Mobile-C semaphore, increasing its count by one.

Return Value
This function returns 0 on success, or non-zero if the id could not be found or on a semaphore error.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description

MC_SemaphorePost unlocks a resourse from a previously allocated and initialized Mobile-C synchroniza-
tion variable being used as a semaphore. This function may be called multiple times to increase the count
of the semaphore up to INT_MAX. Note that although a Mobile-C synchronization variable may be used
as a mutex, condition variable, or semaphore, once it is used as a semaphore, it should only be used as a
semaphore for the remainder of its life cycle.

Example

See Also
MC_SemaphoreWait(), MC_Synclnit(), MC_SyncDelete().

51



MC _SemaphoreWait()

Synopsis
#include <libmc.h>
int MC_SemaphoreWait(MCAgency_t agency, int id);

Purpose
This function allocates one resource from a Mobile-C synchronization semaphore variable.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description

This function allocates one resource from a previously allocated and initialized Mobile-C synchronization
semaphore. If the semaphore resource count is non-zero, the resource is immediately allocated. If the
semaphore resource count is zero, the function blocks until a resource is freed before allocating a resource
and continuing. Note that although a Mobile-C synchronization variable may be used as a mutex, condition
variable, or semaphore, once it is used as a semaphore, it should only be used as a semaphore for the re-
mainder of its life cycle.

Example

See Also
MC_SemaphorePost(), MC_Synclnit(), MC_SyncDelete().

52



MC_SendAgentMigrationMessage()

Synopsis

#include <libmc.h>

int MC_SendAgentMigrationMessage(MCAgency_t agency, char *message, char *hostname, int
port);

Purpose
Send an ACL mobile agent message to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with an agency from which to send the ACL mobile agent message.
A NULL pointer can be used to send the ACL message from an unspecified agency.
message The ACL mobile agent message to be sent.

hostname The hostname of the remote agency. It can be in number-dot format or hostname format,
i.e., 10.20.30.40 or iel.ucdavis.edu.
port The port number on which the remote agency is listening.

Description
This function is used to send an XML based ACL mobile agent message, which is a string, to a remote
agency. This function can be used without a running local agency.

Example

See Also

53



MC_SendAgentMigrationMessageFile()

Synopsis

#include <libmc.h>

int MC_SendAgentMigrationMessageFile(MCAgency_t agency, char *filename, char *hostname,
int port);

Purpose
Send an ACL mobile agent message saved as a file to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with an agency from which to send the ACL mobile agent message.
A NULL pointer can be used to send the ACL message from an unspecified agency.
filename The ACL mobile agent message file to be sent.

hostname The hostname of the remote agency. It can be in number-dot format or hostname format,
i.e., 10.20.30.40 or iel.ucdavis.edu.
port The port number on which the remote agency is listening.

Description
This function is used to send an XML based ACL mobile agent message, which is saved as a file, to a remote
agency. This function can be used without a running local agency.

Example

See Also

54



MC_SetAgentStatus()

Synopsis
#include <libmc.h>
int MC _SetAgentStatus(MCAgent_t agent, int status);

Purpose
Set the status of a mobile agent in an agency.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
agent The mobile agent whose status is to be assigned.
status An integer representing the status to be assinged to a mobile agent.

Description

This function sets the status of a mobile agent by one of the enumerated values listed below.
0, WAIT_CH : Mobile agent will wait to be executed.
3, AGENT_NEUTRAL : Mobile agent will wait for an unspecified reason.
4, AGENT_SUSPENDED :  Mobile agent will be suspended.

Example

See Also

55



MC _SetDefaultAgentStatus()

Synopsis
#include <libmc.h>
int MC _SetDefaultAgentStatus(MCAgency_t agency, int status);

Purpose
Set the default status of any incoming mobile agents.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
agency A handle to a running agency.
status An integer representing the status to be assinged to any incoming mobile agents as their default
status.

Description
This function sets the default status of any incoming mobile agents by one of the enumerated values listed
below.

0, WAITCH: Mobile agent will wait to be executed.
3, AGENT_NEUTRAL : Mobile agent will wait for an unspecified reason.
4, AGENT_SUSPENDED :  Mobile agent will be suspended.

Example

See Also

56



MC_SetThread Off()

Synopsis
#include <libmc.h>
int MC _SetThreadOff(MCAgencyOptions_t xoptions, enum threadIndex_e thread);

Purpose
Set a particular thread to not execute upon Mobile-C initialization.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
options An allocated MCAgencyOptions_t variable.
thread A thread index.

Description
This function is used to modify the Mobile-C startup options. It is used to disable threads that may otherwise
be enabled. The threads which may be modified are

MC_THREAD Al : Agent Initializing Thread - Create agent from incoming messages.

MC_THREAD_AM : Agent Managing Thread - Manage active agents.

MC_THREAD_CL : Connection Listening Thread - Listen incoming connections.

MC_THREAD_MR : Message Receiving Thread - Handle incoming connections and recieve agent mes-
sages.

MC_THREAD_MS : Message Sending Thread - Handle outgoing connections and send agent mes-
sages.

MC_THREAD CP: Command Prompt Thread - Handle an interactive user command prompt.

Example

MCAgencyOptions_t options;
MCAgency_t agency;

/+ Turn the listen thread off. We will receive our messages
in another method. =/
MC_SetThreadOff (&options, MC_THREAD_AT);

/* Start the agency with no listen threadx/
agency = MC_Initialize (5050, &options);

/*x etc ... x/

See Also
MC_SetThreadOn()

57



MC_SetThreadOn()

Synopsis
#include <libmc.h>
int MC _SetThreadOn(MCAgencyOptions_t xoptions, enum threadIndex_e thread);

Purpose
Sets a particular thread to execute upon Mobile C initialization.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
options An allocated MCAgencyOptions_t variable.
thread A thread index.

Description
This function is used to modify the Mobile-C startup options. It is used to enable threads that may otherwise
be disabled. The threads which may be modified are

MC_THREAD Al : Agent Initializing Thread - Create agent from incoming messages.

MC_THREAD_AM : Agent Managing Thread - Manage active agents.

MC_THREAD_CL : Connection Listening Thread - Listen incoming connections.

MC_THREAD_MR : Message Receiving Thread - Handle incoming connections and recieve agent mes-
sages.

MC_THREAD_MS : Message Sending Thread - Handle outgoing connections and send agent mes-
sages.

MC_THREAD CP: Command Prompt Thread - Handle an interactive user command prompt.

Example

MCAgencyOptions_t options;
MCAgency_t agency;

/* Turn the command prompt thread on =/
MC_SetThreadOn (&options, MC_THREAD_CP) ;

/+ Start the agency with a command prompt on port 5050 =/
agency = MC_Initialize (5050, &options);

/* etc ... */

See Also
MC _SetThreadOff()

58



MC_SyncDelete()

Synopsis
#include <libmc.h>
int MC _SyncDelete(int ¢d);

Purpose
Delete a previously initialized synchronization variable.

Return Value
This function returns 0 on success and nonzero otherwise.

Parameters
id The 1d of the condition variable to delete.

Description
This function is used to delete and deallocate a previously initialized Mobile-C synchronization variable.

Example

See Also
MC_Synclnit().

59



MC_Synclnit()

Synopsis
#include <libmc.h>
int MC _SyncInit(MCAgency_t agency, int id);

Purpose
Initialize a new synchronization variable.

Return Value
This function returns the allocated id of the synchronization variable.

Parameters
agency The agency in which the new synchronization variable should be initialized.
id A requested synchronization variable id. A random id will be assigned if the value passed is 0
or if there is a conflicting id.

Description

This function initializes a generic Mobile-C synchonization node for use by agents and the agency. Each
node contains a mutex, a condition variable, and a semaphore. Upon initialization, each variable is initial-
ized to default values: The mutex is unlocked and the semaphore has a value of zero. Each node may be
used as a mutex, condition variable, or semaphore. Though it is possible to use multiple synchronization
variables in a single node, this is discouraged as it may lead to unpredictable results.

Example
See Also

MC_CondSignal(), MC_CondWait(), MC_MutexLock(), MC_MutexUnlock(), MC_SemaphorePost(), MC_SemaphoreWait(),
MC_SyncDelete().

60



MC _TerminateAgent()

Synopsis
#include <libmc.h>
int MC _TerminateAgent(MCAgent_t agent);

Purpose
Terminate the execution of a mobile agent in an agency.

Return Value
The function returns 0 on success and an error code on failure.

Parameters
agent A valid mobile agent.

Description

This function halts a running mobile agent. The Ch interpreter is left intact. The mobile agent may still
reside in the agency in AGENT_NEUTRAL mode if the mobile agent is tagged as ’persistent’, or is termi-
nated and flushed otherwise.

Example

See Also

61



MC_Wait()

Synopsis
#include <libmc.h>
int MC_Wait(MCAgency_t agency);

Purpose
Cause the calling thread to wait indefinitely on an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency A handle associated with a running agency.

Description
This function simply waits for the agency. It must be run on a handle that is attached to an agency that has
already been started with the function MC _Initialize().

Example

See Also

62



MC_WaitAgent()

Synopsis
#include <libmc.h>
int MC_WaitAgent(MCAgency_t agency);

Purpose
Cause the calling thread to wait until a mobile agent is received.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency A handle associated with a running agency.

Description
This function waits on an agency and wakes up the addition of a new mobile agent to the agency.

Example

See Also

63



MC_WaitRetrieveAgent()

Synopsis
#include <libmc.h>
MCAgent_t MC_WaitRetrieveAgent(MCAgency_t agency);

Purpose
Block the calling thread until a mobile agent arrives, and return the mobile agent instead of executing it.

Return Value
The function returns a mobile agent on success and a NULL on failure.

Parameters
agency A handle associated with a running agency.

Description
This function waits on an agency and wakes up the addition of a new mobile agent to the agency. It will
then remove the mobile agent from the agency and return it.

Example

See Also

64



MC_WaitSignal()

Synopsis
#include <libmc.h>
int MC_WaitSignalMCAgency_t agency, int signals);

Purpose
This function is used to block the execution of a Mobile-C library application until the event of a signal.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters

agency A handle to a running agency.
stgnals A bitwise-or combination of signals to wait on.

Description
This function is used to block the execution of an application using the Mobile-C library until a given signal
is received as specfied by the parameter signals. Currently implemented signals that may be waited on are:

RECV_CONNECTION : Continue after a connection is initialized.
RECV_MESSAGE : Continue after a message is received.
RECV_AGENT : Continue after an agent is received.
EXEC_AGENT : Continue after an agent is finished executing.
ALL_SIGNALS : Continue after any one of the above events occurs.

In order to wait on a custom combination of signals, the bitwize ’or operator’ may be used to specify com-
binations of signals.

Example

/*x More code here. «*/

/+* Now we wait until we receive a message or mobile agent. =/
MC_WaitSignal (agency, RECV\_MESSAGE | RECV_AGENT) ;

/+ At this point, a message or mobile agent has been received. =*/
/+ Perform operations on the new message or mobile agent here. x/

/* Resume the Mobile-C library x/
MC_ResetSignal (agency) ;

/* More code here. =/

The above piece of code blocks execution until either a RECV_MESSAGE or a RECV_AGENT event oc-
curs. The function MC_ResetSignal() must be invoked at some point after returning from MC_WaitSignal()

65



in order for Mobile-C to resume normal operations.

See Also
MC_ResetSignal()

66



Appendix B

Mobile-C API in the C/C++ Script Space

The prototypes of Mobile-C functions used in the C/C++ script space are declared in mob_agent.c through
an Embedded Ch function, Ch_DeclareFunc() [12]]. Every arriving mobile agent will be appended to
one line of code that defines a data type used as a parameter or return value for Mobile-C functions
in the C/C++ script space. This line of code can be found in mob_agent.c. The function prototypes
and defined data type shown in Tables and are listed in agent_space_api.txt for user’s infor-
mation. mob_agent.c and agent_space_api.txt can be found in directories < MCPACKAGE>/src’ and
*<MCPACKAGE>/src/include’, respectively. <MCPACKAGE> is the directory for the downloaded Mobile-
C package containing all the source files of the library, examples, and documentation.

Table B.1: Data type for functions in the C/C++ script space.

Data Type Description

MCAgent_t A void pointer for a mobile agent.

67



Table B.2: Functions in the C/C++ script space.

Function

Description

mc_CondSignal()
mc_CondWait()

mc_FindAgentByID()
mc_FindAgentByName()
mc_GetAgentStatus()
mc_GetAgentXMLString()
mc_MutexLock()

mc_MutexUnlock()
mc_PrintAgentCode()
mc_RetrieveAgent()
mc_RetrieveAgentCode()
mc_SemaphorePost()
mc_SemaphoreWait()

Signal another agent that is waiting on a condition variable.

Cause the calling agent or thread to wait on a Mobile C c ondition vari-
able with the ID specified by the argument.

Find a mobile agent by its ID in an agency.

Find a mobile agent by its name in an agency.

Get the status of a mobile agent in an agency.

Retrieve a mobile agent message in XML format as a character string.
Lock a previously initialized Mobile-C synchronization variable as a
mutex.

Unlock a locked Mobile-C synchronization variable.

Print a mobile agent code for inspection.

Retrieve the first neutral mobile agent from the mobile agent list.
Retrieve a mobile agent code in the form of a character string.

Unlock one resource from a Mobile-C semaphore.

Allocate one resource from a Mobile-C synchronization semaphore
variable.

mc_SendAgentMigrationMessagefend an ACL mobile agent message to a remote agency.
mc_SendAgentMigrationMessageRitel an ACL mobile agent message saved as a file to a remote agency.

mc_SetAgentStatus()

mc_SetDefaultAgentStatus()

mc_SyncDelete()
mc_Synclnit()
mc_TerminateAgent()

Set the status of a mobile agent in an agency.

Assign a user defined default status to all incoming mobile agents.
Delete a previously initialized synchronization variable.

Initialize a new synchronization variable.

Terminate the execution of a mobile agent in an agency.

68



mc_CondSignal()

Synopsis
int mc_CondSignal(int id);

Purpose
Signal another mobile agent which is waiting on a condition variable.

Return Value
This function returns O if the condition variable is successfully found and signalled. It returns non-zero if
the condition variable was not found.

Parameters pace-0.1in
id The id of the condition variable to signal.

Description

This function is used to signal another mobile agent or thread that is waiting on a Mobile-C condition vari-
able. The function that calls mc_CondSignal() must know beforehand the id of the condition variable an
agent may be waiting on. Note that although a MobileC synchronization variable may act as a mutex, con-
dition variable, or semaphore, once it is used as a condition variable, it should only be used as a condition
variable for the remainder of it’s life cycle.

Example

See Also
mc_CondDelete(), mc_Condlnit(), mc_CondSignal().

69



mc_CondWait()

Synopsis
int mc_CondWait(int id);

Purpose
Cause the calling mobile agent or thread to wait on a Mobile-C condition variable with the id specified by
the argument.

Return Value
This function returns 0 upon successful wakeup or non-zero if the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description

This function blocks until the condition variable on which it is waiting is signalled. If an invalid id is
specified, the function returns 1 and does not block. The function is designed to enable synchronization
possibilities between threads and mobile agents without using poll-waiting loops. Note that although a Mo-
bileC synchronization variable may act as a mutex, condition variable, or semaphore, once it is used as a
condition variable, it should only be used as a condition variable for the remainder of it’s life cycle.

Example

See Also
mc_CondDelete(), mc_CondInit(), mc_CondSignal().

70



mc_FindAgentByID()

Synopsis
MCAgent_t MC_FindAgentByID(int id);

Purpose
Find a mobile agent by its ID number in a given agency.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
id An integer representing a mobile agent’s ID number.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s ID number.

Example

See Also

71



mc_FindAgentByName()

Synopsis
MCAgent_t mc_FindAgentByName(const char *name);

Purpose
Find a mobile agent by its name in an agency.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
name A character string containing the mobile agent’s name.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s given name.

Example

See Also

72



mc_GetAgentStatus()

Synopsis
#include <mobilec.h>
int mc_GetAgentStatus(MCAgent_t agent);

Purpose
Get the status of a mobile agent in an agency.

Return Value
This function returns an enumerated value representing the current status of a mobile agent. The values are

0, WAITCH: Mobile agent is currently waiting to be executed.

1, WAIT_MESSGSEND : Mobile agent is currently waiting to be exported to another agency.

2, AGENT_ACTIVE : Mobile agent is currently being executed.

3, AGENT_NEUTRAL : Mobile agent is waiting for an unspecified reason.

4, AGENT_SUSPENDED :  Mobile agent is currently being suspended.

5, WAIT_FINISHED : Mobile agent has finished execution and is waiting for removal.
Parameters

agent The mobile agent from which to retrieve status information.

Description
This function gets a mobile agent’s status. The status is used to determine the mobile agent’s current state
of execution.

Example

See Also

73



mc_GetAgentXMLString()

Synopsis
char *mc_GetAgentXMLString(MCAgent_t agent);

Purpose
Retrieve a mobile agent message in XML format as a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the XML formatted message.

Description
This function retrieves a mobile agent message in XML format as a character string. The return pointer is
allocated by *malloc()’ and must be freed by the user.

Example

See Also

74



mc_MutexLock()

Synopsis
int mc¢_MutexLock(int id);

Purpose
This function locks a previously initialized Mobile-C synchronization variable as a mutex. If the mutex is
already locked, the function blocks until it is unlocked before locking the mutex and continuing.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters
id The id of the synchronization variable to lock.

Description
This function locks the mutex part of a Mobile-C synchronization variable. While this is primarily used to
guard a shared resource, the behaviour is similar to the standard POSIX mutex locking. Note that although a
Mobile-C synchronization variable may assume the role of a mutex, condition variable, or semaphore, once
a Mobile-C synchronization variable is used as a mutex, it should not be used as anything else for the rest of
its life cycle.

Example

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5051">
</DATA>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
int mutex_id;
printf ("Sleep agent has arrived.\n");
mutex_id = mc_SyncInit (55);

if (mutex_id != 55) {
printf ("Possible error. Aborting...\n");
exit (1);

}
printf ("This is agent 1.\n");

75



printf ("Agent 1: I am locking the mutex now.\n");

mc_MutexLock (mutex_id) ;

printf ("Agent 1: Mutex locked. Perform protected operations here\n");
printf ("Agent 1: Waiting for 5 seconds...\n");

sleep(5);

printf ("Agent 1: Unlocking mutex now...\n");

mc_MutexUnlock (mutex_id) ;

return 0;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</GAF_MESSAGE>

The previous example code may be found at mobilec/demos/agent_mutex_example/sleep.xml

See Also
mc_MutexUnlock(), mc_SynclInit(), mc_SyncDelete().

76



mc_MutexUnlock()

Synopsis
int mc¢_MutexUnlock(int id);

Purpose
This function unlocks a locked Mobile-C synchronization variable.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters
id The id of the synchronization variable to lock.

Description

This function unlocks a Mobile-C synchronization variable that was previously locked as a mutex. If the
mutex is not locked while calling this function, undefined behaviour results. Note that although a Mobile-C
may act as a mutex, condition variable, or semaphore, once it has been locked and/or unlocked as a mutex,
it should only be used as a mutex for the remainder of it’s life cycle or unexpected behaviour may result.

Example

See Also
mc_MutexLock(), mc_Synclnit(), mc_SyncDelete().

77



mc_PrintAgentCode()

Synopsis
int mc_PrintAgentCode(MCAgent_t agent);

Purpose
Print a mobile agent code for inspection.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent The mobile agent from which to print the code.

Description
This function prints the mobile agent code to the standard output.

Example

See Also

78



mc_RetrieveAgent()

Synopsis
MCAgent_t mc_RetrieveAgent(void);

Purpose
Retrieve the first neutral mobile agent from a mobile agent list.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
void This function does not take any parameters.

Description
This function retrieves the first agent with status AGENT_NEUTRAL from a mobile agent list. If there are
no mobile agents with this attribute, the return value is NULL.

Example

See Also

79



mc_RetrieveAgentCode()

Synopsis
char *mc_RetrieveAgentCode(MCAgent_t agent);

Purpose
Retrieve a mobile agent code in the form of a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the code.

Description
This function retrieves a mobile agent code. The return pointer is allocated by malloc()’ and must be freed
by the user.

Example

See Also

80



mc_SemaphorePost()

Synopsis
int mc_SemaphorePost(int id);

Purpose
This function unlocks one resource from a Mobile-C semaphore, increasing its count by one.

Return Value
This function returns 0 on success, or non-zero if the id could not be found or on a semaphore error.

Parameters
id The id of the synchronization variable to lock.

Description

mc_SemaphorePost unlocks a resource from a previously allocated and initialized Mobile-C synchroniza-
tion variable being used as a semaphore. This function may be called multiple times to increase the count
of the semaphore up to INT_MAX. Note that although a Mobile-C synchronization variable may be used
as a mutex, condition variable, or semaphore, once it is used as a semaphore, it should only be used as a
semaphore for the remainder of its life cycle.

Example

See Also
mc_SemaphoreWait(), mc_Synclnit(), mc_SyncDelete().

81



mc_SemaphoreWait()

Synopsis
#include <libmc.h>
int mc_SemaphoreWait(int :d);

Purpose

This function allocates one resource from a MobileC synchronization semaphore variable.
Return Value

This function returns O on success, or non-zero if the id could not be found.

Parameters
id The id of the synchronization variable to lock.

Description

This function allocates one resource from a previously allocated and initialized MobileC synchronization
semaphore. If the semaphore resource count is non-zero, the resource is immediately allocated. If the
semaphore resource count is zero, the function blocks until a resource is freed before allocating a resource
and continuing.

Note that although a MobileC synchronization variable may be used as a mutex, condition variable, or
semaphore, once it is used as a semaphore, it should only be used as a semaphore for the remainder of its
life cycle.

Example

See Also
mc_SemaphorePost(), mc_Synclnit(), mc_SyncDelete().

82



mc_SendAgentMigrationMessage()

Synopsis
int mc_SendAgentMigrationMessage(char *message, char *hostname, int port);

Purpose
Send an ACL mobile agent message to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
message The ACL mobile agent message to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,
1.e., 10.20.30.40 or iel.ucdavis.edu.
port The port number on which the remote agency is listening.
Description

This function is used to send an XML based ACL mobile agent message, which is a string, to a remote
agency.

Example

See Also

83



mc_SendAgentMigrationMessageFile()

Synopsis
int mc_SendAgentMigrationMessageFile(const char * filename, const char *hostname, int port);

Purpose
Send an ACL mobile agent message saved as a file to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
filename The ACL mobile agent message file to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,
1.e., 10.20.30.40 or iel.ucdavis.edu.
port The port number on which the remote agency is listening.
Description

This function is used to send an XML based ACL mobile agent message, which is saved as a file, to a remote
agency.

Example

See Also

84



mc_SetAgentStatus()

Synopsis
int mc_SetAgentStatus(MCAgent_t agent, int status);

Purpose
Set the status of a mobile agent in an agency.

Return Value
This function returns 0 on success and non-zero otherwise.
Parameters
agent The mobile agent whose status is to be assigned.
status An integer representing the status to be assinged to a mobile agent.

Description

This function sets the status of a mobile agent by one of the enumerated values listed below.
0, WAIT CH : Mobile agent will wait to be executed.
3, AGENT_NEUTRAL : Mobile agent will wait for an unspecified reason.
4, AGENT_SUSPENDED :  Mobile agent will be suspended.

Example

See Also

85



mc_SetDefaultAgentStatus()

Synopsis
int mc_SetDefaultAgentStatus(int status);

Purpose
Set the default status of any incoming mobile agents.

Return Value
This function returns 0 on success and non-zero otherwise.
Parameters
status An integer representing the status to be assinged to any incoming mobile agents as their default
status.

Description
This function sets the default status of any incoming mobile agents by one of the enumerated values listed
below.

0, WAIT CH : Mobile agent will wait to be executed.
3, AGENT_NEUTRAL : Mobile agent will wait for an unspecified reason.
4, AGENT_SUSPENDED :  Mobile agent will be suspended.

Example

See Also

86



mc_SyncDelete()

Synopsis
int mc_SyncDelete(int id);

Purpose
Delete a previously initialized synchronization variable.

Return Value
This function returns O on success and nonzero otherwise.

Parameters
id The id of the condition variable to delete.

Description
This function is used to delete and deallocate a previously initialized Mobile-C synchronization variable.

Example

See Also
mc_Synclnit().

87



mc_Synclnit()

Synopsis
int mc_SynclInit(int id);

Purpose
Initialize a new synchronization variable for agents to wait on.

Return Value
This function returns the allocated id of the synchronization variable.

Parameters
id A requested synchronization variable id. A random id will be assigned if the value passed is 0
or if there is a conflicting id.

Description

This function initializes and registers a new MobileC synchronization variable. Mobile-C Synchronization
variables may be used as a mutex, a condition variable (with an associated mutex), or a semaphore. The
purpose of the Mobile-C synchronization variables is to synchronize the execution of agents with each other,
as well as the excution of agents with their respective agencies.

Example
See Also

mc_CondSignal(), mc_CondWait(), mc_MutexLock(), mc_MutexUnlock(), mc_SemaphorePost(), mc_SemaphoreWait(),
mc_SyncDelete().

88



mc_TerminateAgent()

Synopsis
int mc_TerminateAgent(MCAgent_t agent);

Purpose
Terminate the execution of a mobile agent in an agency.

Return Value
The function returns O on success and an error code on failure.

Parameters
agent A valid mobile agent.

Description

This function halts a running mobile agent. The Ch interpreter is left intact. The mobile agent may still
reside in the agency in AGENT_NEUTRAL mode if the mobile agent is tagged as ’persistent’, or is termi-
nated and flushed otherwise.

Example

See Also

89



Index

MC_AddAgent(),[30]
MC_ChlInitializeOptions(), [31]
MC_CondSignal(), [32]
mc_CondSignal(), [69]
MC_CondWait(), 33]
mc_CondWait(),
MC_End(), 34

MC _FindAgentByID(), 35]
mc_FindAgentByID(), [7]]
MC_FindAgentByName(), 36
mc_FindAgentByName(), [72]
MC _GetAgentExecEngine(),
MC_GetAgentNumTasks(), [3§]
MC_GetAgentReturnData(), 39
MC_GetAgentStatus(),
mc_GetAgentStatus(), [73]
MC_GetAgentType(), [42]
MC_GetAgentXMLString(), i3]
mc_GetAgentXMLString(),
MC _Initialize(), [d4]
MC_MutexLock(), 43|
mc_MutexLock(), [73]
MC_MutexUnlock(), 6]
mc_MutexUnlock(), [77]
MC_PrintAgentCode(), @7
mc_PrintAgentCode(),

MC _ResetSignal(), @8]

MC _RetrieveAgent(), 49|
mc_RetrieveAgent(), [79
MC_Retrieve AgentCode(), [50]
mc_RetrieveAgentCode(),
MC_SemaphorePost(), [5T]
mc_SemaphorePost(), [B1]
MC_SemaphoreWait(), [52]
mc_SemaphoreWait(), [82]

MC_SendAgentMigrationMessage(), [53]
mc_SendAgentMigrationMessage(), [83]
MC_SendAgentMigrationMessageFile(), [54]
mc_SendAgentMigrationMessageFile(), [84]

MC_SetAgentStatus(), 53]

mc_SetAgentStatus(), [83]
MC_SetDefaultAgentStatus(), [56]
mc_SetDefaultAgentStatus(), [86]
MC_SetThreadOff(),
MC_SetThreadOn(), [58]
MC_SyncDelete(), [59]
mc_SyncDelete(), [87]
MC_SyncInit(), [60]
mc_Synclnit(), B8]
MC_TerminateAgent(), [61]
mc_TerminateAgent(), [§9]
MC_Wait(), 67
MC_WaitAgent(), [63]
MC_WaitRetrieveAgent(), [64]
MC_WaitSignal(), [65]

90



	I User's Guide for Mobile-C Library
	Introduction
	Mobile-C Library Installation
	Prerequisites
	Installation on Unix
	Install the Mobile-C library

	Installation on Windows
	Build the mxml-2.2.2 Library
	Build the Mobile-C library


	Sample Application Programs
	Compilation on Unix
	Compilation on Windows
	Overview of Sample Application Programs
	Execution of Sample Applications

	Architecture of the Mobile-C Library
	Architecture of the Mobile-C Library 
	Implementation of the Mobile-C Library

	Interface between Binary and Mobile Agent Space
	Example 2: Invoke a Mobile Agent Space Function from Binary Space

	Extend Mobile-C Functionality to Mobile Agent Space
	Example 3: Terminate Mobile Agent Execution from Mobile Agent Space
	Example 4: Invoke a Registered Service from Mobile Agent Space

	Synchronization Support in the Mobile-C library
	Example 5: Synchronization Using Mutex in Mobile Agent Space

	Mobile-C API in the C/C++ Binary Space 
	MC_AddAgent()
	MC_ChInitializeOptions()
	MC_CondSignal()
	MC_CondWait()
	MC_End()
	MC_FindAgentByID()
	MC_FindAgentByName()
	MC_GetAgentExecEngine()
	MC_GetAgentNumTasks()
	MC_GetAgentReturnData()
	MC_GetAgentStatus()
	MC_GetAgentType()
	MC_GetAgentXMLString()
	MC_Initialize()
	MC_MutexLock()
	MC_MutexUnlock()
	MC_PrintAgentCode()
	MC_ResetSignal()
	MC_RetrieveAgent()
	MC_RetrieveAgentCode()
	MC_SemaphorePost()
	MC_SemaphoreWait()
	MC_SendAgentMigrationMessage()
	MC_SendAgentMigrationMessageFile()
	MC_SetAgentStatus()
	MC_SetDefaultAgentStatus()
	MC_SetThreadOff()
	MC_SetThreadOn()
	MC_SyncDelete()
	MC_SyncInit()
	MC_TerminateAgent()
	MC_Wait()
	MC_WaitAgent()
	MC_WaitRetrieveAgent()
	MC_WaitSignal()

	Mobile-C API in the C/C++ Script Space 
	mc_CondSignal()
	mc_CondWait()
	mc_FindAgentByID()
	mc_FindAgentByName()
	mc_GetAgentStatus()
	mc_GetAgentXMLString()
	mc_MutexLock()
	mc_MutexUnlock()
	mc_PrintAgentCode()
	mc_RetrieveAgent()
	mc_RetrieveAgentCode()
	mc_SemaphorePost()
	mc_SemaphoreWait()
	mc_SendAgentMigrationMessage()
	mc_SendAgentMigrationMessageFile()
	mc_SetAgentStatus()
	mc_SetDefaultAgentStatus()
	mc_SyncDelete()
	mc_SyncInit()
	mc_TerminateAgent()

	Index


